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Abstract

In the present work, The authors describe two types of problem.
One is the vehicle routing problem with time windows and the second
problem is the pickup and delivery problem with time windows. for
Optimization we use dynamic programming and branch and bound
method. They will not be able to solve large-scale problems. So, we review
three types of approximation algorithms. Construction methods try to
build a feasible solution starting from the raw data. Iterative improvement
methods start from a feasible solution and seek to improve it through a
sequence of local modifications. Incomplete optimization methods use
a combination of enumeration of the solution space and heuristic rules.
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1 Introduction

Over then past twenty years, operations
researchers interested in vehicle routing and
scheduling have emphasized the development
of algorithms for real-life problems. The size
of the problems solved has increased and
practical side constraints are no longer ignored.
Most of the existing algorithms have been designed
to solve pure routing problems and hence only
deal with spatial aspects. They are not capable
of handling all kinds of constraints that
frequently occur in practice. one such constraint

in the specification of time windows at
customers, i.e., time interval during which they
must be served. These lead to mixed routing
and scheduling problems and ask for algorithms
that also take temporal aspects into account.

In the present1 study we consider two
types of models. One is the vehicle routing
problem with time windows (VRPTW), which
is defined as follows. A number of vehicles in
located at a single depot and must serve a
number of geographically dispersed customers.
Each vehicle has a given capacity. Each
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customer has a given demand and must be
served within a specified time window. The
object is to minimize the total cost of travel.
The special case in which the vehicle capacities
are infinite is called the multiple traveling
salesman problems with time windows (m-
TSPTW). It arises in school bus routing
problems. The problem here is to determine
routes that start at a single depot and cover a
set of trips, each of which starts within a time
window. Trips are considered as customers.
There are no capacity constraints, since each
trip satisfies those by definition and vehicle
moving between trips are empty.

The second model is the pickup and
delivery problem with time windows (PDPTW).
Again, there is a single depot, a number of
vehicles with given capacities, and a number
of customers with given demands. Each
customer must now be picked up at his origin
during a specified time window, and delivered
to his destination during another specified time
window. The objective is to minimize total
travel cost.

The special case in which all customer
demands are equal is called the dial-a-ride
problem (DARP), It arises in transportation
systems for the handicapped and the elderly.
In these situations, the temporal constraints
imposed by the customers strongly restrict the
total vehicle load at any point in time, and the
capacity constraints are of secondary importance.
The cost of a route is a combination of travel
time and customer dissatisfaction.

We will denote the time window of
address i (whether it be a customer in the
vehicle routing problem with time windows
(VRPTW) or an origin or destination in the

pickup and delivery problem with time
windows (PDPTW) by [ei, li], the time of arrival
at i by Ai, and the time of departure at i by Di.
It is assumed throughout this paper that the
service time at i is included in the travel time
tij from address i to address j. Since service
must take place within the time windows, we
require that

ei  Di  li for all i.
If Ai < ei, then a waiting time Wi = ei – Ai

occurs before the opening of the window at i.

There are several ways5,6 to define the
tightness of the time windows. One could say
that the windows are tight when the underlying
network with addresses as vertices contains
no time-feasible cycles. This guarantees that
all feasible routes are elementary paths.
However, this condition is difficult to verify,
and we do not get much information if it does
not hold. The following two definitions may
be more relevant:
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T1 is the ratio between the average window
width and the average travel time. If T1 is its
minimum value 0, we have a pure scheduling
problem. If T1 is in between 0 and 2, we can
expect that there are not many time-feasible
cycles, and the temporal aspect are likely to
dominate the spatial aspects. If T1 is large,
we have almost a pure routing problem. These
are, of course, only rough indicators.

T2 is the ratio between the average
window width and the time horizon. The value
of T2 is between 0 and 1, with 0 indicating a



Optimization of Multi-Objective---Level and Multi-Tiered Networks. 281

pure scheduling problem and 1 a problem with
identical time windows.

In the following, vehicle routing
problem (VRP) denotes the vehicle routing
problem with the windows (VRPTW) without
time windows. Traveling salesman problem
with time windows (TSPTW) is the multiple
traveling salesman problem with time windows
(m-TSPTW) with a single salesman, and
traveling salesmen problem (TSP) is the
traveling salesman problem with time window
(TSPTW) without time windows. Since the
traveling salesman problem (TSP) is already
NP-hard, one has to obtain solution to the
vehicle routing problem with time window
(VRPTW) and pickup and delivery problem
with time windows (PDPTW) by fast approxi-
mation or enumerative optimization. In section
2 we present mathematical programming
formulations for these problem and some of
their extensions. In section 3, we survey
optimization algorithms based on dynamic
programming and set partitioning. In section
4, we review various types of approximation
algorithms.

2. Formulation :

In this section, the vehicle routing
problem with time windows (VRPTW) and
the pickup and delivery problem with time
windows (PDPTW) are defined and formulated
as mathematical programs. We concentrate
on the basic problem, with a single depot, and a
single vehicle type. We indicate generalizations
involving multiple depots, multiple vehicle types
and constraints on the travel time of the
vehicles.

2.1 The vehicle routing problem with time

windows :

Given is a graph G = (V,A) with a set
V of vertices and a set A of arcs. We have

V N l q
Where 0 indicate the depot and N= {1,……,n,}
in the set of  customers, and

A xN I Nx ( ) ( { }), l q  

Where

I    N x N

Is the set of arcs connecting the
customers {0} x N contains the arcs from the
depot to the customers, and N x {0} contains
the arcs from the customers back to the depot.
For each customers i  N , there is a demand
qi and a time window [ei, li] for each arc (i, j)
A, there is a cost cij and a travel time tij. Finally,
the vehicle capacity is given by Q. We note
that the number of vehicles is unbounded in the
present formulation. We also note that an arc
(i, j  I may  be  eliminated by temporal constraints
(ei +tij>lj) by capacity constraints (qi + qj > Q)
or other considerations. The objective is to
minimize total travel cost.

The mathematical programming
formulation has three types of variables.
 Xij (ci,j)  A), equal to 1.

If arc (i, j) is used by a vehicle and 0 otherwise;
Di (i  N),

Specifying the departure time at
customer i; and yi (i  N), specifying the load
of the vehicle arriving at i. The problem is now
to minimize



  ( )ij A ij ijC x  (1)
Subject to

  j N ijX  for i N,  (2)

  j N ij j N jiX X     for i  N,  (3)
xij = 1  Di + tij  Dj    for (i,j)  I,  (4)
ei  Di  li      for i  N,  (5)
xij = 1  yi + qi  yj      for (i, j)  I,  (6)
0  yi  Q      for i  N,  (7)
Xij {0,1}      for (i, j)  A.  (8)

The objective function (1) represents total
travel cost; it is possible to include the fixed
charge of using a vehicle by adding it to all
Coj. Minimizing (1) subject to (2), (3) and (8)
is a minimum cost flow problem, which has an
integral solution. Constraints (4) and (5) ensure
feasibility of the schedule, and constraints (6)
and (7) guarantee feasibility of the loads.
This vehicle routing problem with time
windows (VRPTW) formulation is more
compact than the vehicle routing problem
(VRP) formulation due to Bodin and Golden3.
The latter formulation has O(n3) variable and
an exponential number of subtour elimination
constrains. The above formulation has O(n2)
variables, while the subtours are eliminated by
(4), as well as by (6).
These constraints can be rewritten as follows,
where M is a large constraint:

Di – tij – Dj  (1 – xij) M    for (i, j)  I, (4a)
Yi +qi - yj  (1- xij) M      for (i, j)  I, (6a)

In their traveling salesman problem
(TSP) formulation, Miller, Tucker and Zemlin29

propose the following subtour elimination
constraints:

Di – Dj + n xij < n – 1  for (i,j)  I.

These appear as a special case of (4a) when
all tij = 1 and M = n, and as a special case of
(6a) when all q1 = 1 and M = n.
The above single – depot formulation is based
on a single – commodity flow. There is no
explicit flow conservation constraint for the
depot, as this is implied by the flow conservation
constraints (3) for the customers. Let us now
consider the multi-depot case. The single depot
0 is replaced by a set M of depots. In the graph
G = (V, A), we now have
 V M N and A M N I N M   ( ) ( ) ( ),  

where N and I are on before. There are two
variants. In case each vehicle must return to
its home depot, we need a multi-commodity
flow formulation with a separate commodity
for each depot. Each variable xij is replaced
by variables

xk
ij ( k  M), where xk

ij = 1.
If arc (i, j) is used by a vehicle by from depot
k, and 0 otherwise. In case vehicles do not
have to return to their points of origin, all we
have to do is to add a flow conservation
constraint for each depot.

The case of multiple21-22 vehicle types
is modeled with fictitious depots. For each type
of vehicle at a given depot, we create a fictitious
depot with a separate commodity to ensure
that the number of vehicle of each type at each
depot is balanced. The case that the vehicles
have upper bounds on their total travel time is
handled by the specification of a time window
for the depot. The case that the vehicles have
different periods of availability is obviously
dealt with by the introduction of fictitious depots
with the windows.
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2.2 The pickup and delivery problem with
time windows :

As in the previous section, there is a
set N of customers. In the current situation
however, each customer i  N request the
transportation from an origin i+ to a destination
i we write
N+ = {i+ | i  N}
For the set of origins and
N- = {i- | i  N}
for the set of destinations.
The graph G = (V, A) is now defined as follows.
 The vertex set is given by V N N  { } )   ,
Where 0 denotes the depot, the arc set is given by
 A xN I N x where I  ({ } ) ( { }), (  

N N x N N   ( ) ( ) 

is the set of arcs corresponding to feasible trips
between origins and destinations, for each
customer i  N, there are a demand qi and
two time windows

. [ei
+, li

+] and [ei
-, li

-] for each are (i, j)  A,

There is a cost Cij and a travel time tij.
Finally, there is set M of vehicles, each with
capacity Q. The objective is to minimize total
travel cost.

The mathematical programming
formulation has the same three types of
variables as in the case of the vehicle routing
problem with time windows (VRPTW)
Xk

ij (i,j)  A, k  M),
equal to 1 if arc (i, j) is used by vehicle k and 0
otherwise,
 Di (i  N+ U N-),
specifying the departure time at vertex i; and
yi (i  N+ U N-),

specifying the load of the vehicle arriving at i.
We note that the flow variables have now a
third index in order to ensure that the pickup
at i+ and delivery to i- are done by the same
vehicle. The problem is to minimize

specifying the load of the vehicle arriving at i.
We note that the flow variables have now a
third index in order to ensure that the pickup
at i+ and delivery to i- are done by the same
vehicle. The problem is to minimize

 
( , ) ,i j A k M

Cij xij
k

  (9)

Subject to
 

j v ij
k

k M
x

   for i  N+
, (10)

 
j v ij

k
j v ij

kx x
     for iN+ UN-

,

        k  M,     (11)
 

j v
x

i j
k


 j V

Xji
k

     for i  N, k M,
(12)

 D t Di i i i      for i  N, (13)

 x D t Dij
k

i ij j     for (i,j)I, k M,
 (14)

ei < Di < li           for i  N+ UN-
,, (15)

 x y q yij
k

i i j     for (i,j)I, kM,
(16)

0 < yi < Q     for i  N+
,      (17)

 xij
k ( , )       for (i,j)  A, kM (18)

Minimizing (9) subject to (10), (11) and
(18) is a multi-commodity minimum cost flow
problem of a more complex structure than in
the case of the vehicle routing problem with
time windows (VRPTW). Constraints (12)
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ensure that each i+ and i- are visited by the
same vehicle. Constraints (13) represent the
precedence relation between pickup and
delivery point. Constraint (14) and (15) ensure
feasibility of the schedule, and constraint (16)
and (17) guarantee feasibility of the loads; we
note that capacity constraints are only specified
for origins because a vehicle reaches its maximum
load after a pickup. We also note that all modal
extensions presented for the vehicle routing
problem with time windows (VRPTW) can
be applied to the pickup and delivery problem
with time windows (PDPTW).

3. Optimization :

Optimization algorithms for routing
problems with time windows employ the two
standard principles of implicit enumeration,
dynamic programming and branch and bound.
Among the brands and bound methods, two
approaches stand out. One is the set partitioning
approach, which uses column generation to
solve a continuous relaxation of the problem
and branch and bound to obtain integrality. The
other approach uses state space relaxation to
compute lower bounds. Dynamic programming
is mainly applied to solve single-vehicle
problem. Those problems arise in the context
of column generation and state space
relaxation, so that dynamic programming
algorithms appear as subroutines in branch and
bound methods.

In section 3.1, we collect the appli-
cations of dynamic programming, including
state space relaxation. In section 3.2, we
discuss the set partitioning approach. A variety
of other branch and bound method is reviewed
below.

Baker2 presents a branch and bound

method for the traveling salesman problem
with time windows (TSPTW), in which bound
are derived from longest path problems. He
solves small problems with this method. The
most widely studied routing problem with time
windows is the school bus routing problem31

which is essentially an multiple traveling salesman
problem with time windows (m – TSPTW).
Two objectives are distinguished: minimizing
fleet size and minimizing a weighted combination
of fleet size and total travel time. As to the
first objective, Swersey and Ballard45 discretize
the time windows and solve the linear
programming relaxation of the resulting integer
programming problem. For most instances, the
solution is integral; otherwise, they are able to
modify the solution so as to obtain integrality
without increasing the fleet size. Desrosiers,
Sauve and Soumis17 study the Lagrangean
relaxation which is obtained by relaxing
constraints (2). As one visit to each customer
is no longer required, the lagrangean problem
is a shortest path problem with time windows.
Although the lower bound is often equal to the
optimal fleet size, this dual method does not
necessarily produce a feasible solution, in
which case branch and bound has to be
applied.

For the multiple-traveling salesman
problem with time windows (m-TSPTW)
with the second objective function, Desrosiers,
soumis, Desrochers and Sauve19 study the
network relaxation which is obtained by
removing the scheduling constraints (4) and
(5). If ei = li  for all i  N,  then this relaxation
produces an optimal solution in view of the
definition of I. The quality of the bounds
deteriorates with an increasing number of
customers and an increasing width of the time
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windows. Two branching rules are proposed:
branching on the flow variables and branching
by splitting time windows. In the case of very
tight time windows, Soumis, Desrosiers and
Desrochers44 apply the first rule to solve
problem with up to 150 customers, as the time
windows become wider, the tree grows rapidly
in size. The second branching rule can handle
wider time windows, but it is concluded that
the network relaxation is inferior to the set
partitioning relaxation considered in section
3.2. Sorensen43 suggests the use of lagrangean
decomposition23,25 for the vehicle routing
problems with time windows (VRPTW). The
two resulting subproblems are the shortest path
problems with time windows and the generalized
assignment problem. No computational results
have been reported.

3.1. Dynamic programming :

Dynamic26 programming is traditional
solution method for constrained shortest path
problem.  The  constituents  of  a dynamic
programming algorithm are states, transitions
between states, and recurrence equations that
determine the value of the objective function
at each state. Let us consider the standard shortest
path problem on a graph G = (V, A) with vertex
set V, arc set A, a source O  V, and a travel time
tij for each (i, j)  A. Each vertex represents
a state, each arc represents a transition between
two states, and the value d(j) associated with
state j is the shortest path duration from the
source 0 to vertex j. The recurrence equations
to compute these values are

d(0) = 0
 d j d i ti j A ij( ) min { ( ) }( , )    for j  V \ {0}
This algorithm has running time that is

polynomially bounded in the size of G.

Constraints are treated by expansion
of the state space and modification of the
recurrence  equations.  Such  a  Dynamic
programming  approach  can be useful for
several NP-hard routing problems. However,
the cardinality of the state space is usually
exponential in the problem size. The practical
use of dynamic programming in this context is
restriced to state space of at most pseudopo-
lynomial size and relatively small problem
instances.

3.1.1 Single-vehicle problems with time
windows :

We will consider four problems in this
section: the traveling salesman problem with
time windows, the single-vehicle dial-a ride
problem, and two constrained shortest path
problems.

The traveling salesman problem with
time window (TSPTW) can be viewed as the
problem of finding a shortest path from an
origin 0 to a destination n+1 that visits all
vertices in the set N and respects the time
window of each vertex. Christofides, Mingozzi,
and Toth7 propose the following dynamics
programming algorithm. There are states of
the form (S, j) with

S  N
And j  S and, d(S,j)

Denotes the shortest duration of a feasible path
starting at 0,visiting all vertices in S, and
finishing at j. The optimal solution value
 d N n n( { }, )   
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is determined by the following recurrence
equations.
d({0}, 0) = e0

 d S j d S j i ti S j i j A ij( , ) min { ( { }, )( ),{ , }    

 for j n { },
Where we redefine
d(S,j) = ej in case d(S,j) < ej and d(S, j) =  in
case d(S, j) > lj.

Psaraftis32 uses dynamic programming
to solve the single vehicle dial-a-ride problem
(DARP). The states are of the form (j, kj….,
kn) where j is the vertex presently visited and
each ki can assume three values that denote
the status of customer i: not yet picked up,
picked up but not yet delivered, and delivered.
It is now straight forward to define the feasible
transitions between states.  The Algorithm has
2n stages, each of which extends the path
constructed so for with one arc. The total time
requirement is O(n2 3n). Psaraftis estimates
that this approach is able to solve problems
with up to ten customers.

Desrosiers, Dumas and Soumis14 give
a similar 2n-stage algorithm for the capacitated
single-vehicle pickup and delivery problem
with time windows (PDPTW). They propose
a number of state elimination rules to reduce
the computational effort. In addition to Psraftis’
feasibility tests which eliminate states on the
basis of information about customers picked
up so far, they also have feasibility tests which
use information about customers not yet
delivered. The algorithm can solve real-life
problem with up to 40 customers41.

Two types of constrained shortest path

problems have been considered: the shortest
path problem problems with time windows
(SPPTW) and the capacitated shortest path
problem with pickups, deliveries and time
windows (SPPPDTW). The main difference
between these problems and the single-vehicle
dial-a-ride problem (DARP) is that the path
is no longer required to visit all customers. For
the shortest path problem problems with time
windows (SPPTW) which is defined by (1),
(3) – (5) and (8) Desrosiers, Palletier and
Soumis16 propose a label correcting method.
Desrochers and Soumis11,12 give two pseudo-
polynomial algorithms. One is a label setting
method, the other a primal-dual method.
Desrochers10 generalizes the letter algorithm
to the case of multidimensional time windows.
For the shortest path problem with pickup,
deliveries and time windows (SPPPDTW)
[(9) and (11) – (18)], Dumas20 and Dumas and
Desrosiers20 present an Algorithm which is
similar to the one for the capacitated single
vehicle pickup and delivery problem with
time windows (PDPTW).

           As we have mentioned before3, dynamic
programming algorithm are mostly used as
subroutines in other solution method. This is
because the problems considered in this section
occur as subproblem in multi-vehicle problems.
The traveling salesman problem with time
windows (TSPTW) and the single vehicle
dial-a-ride problem (DARP) arise in the
second phase of cluster-first route-second
approaches, where the first phase allocates
customers to vehicles and the second phase
asks for single-vehicle routes. The shortest
path problems with time windows (SPPTW)
occurs as a subproblem in the set partitioning
algorithm for the multiple traveling salesman
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problem with time windows(m-TSPTW) due
to Desrosiers, Soumis and Desrochers18, in the
Lagrangean relaxation algorithm for the fleet
size problem due to Desrosiers, Sauve and
Soumis17: in the Lagrangean decomposition
algorithm for the vehicle routing problem with
time windows (VRPTW) due to Sorensen43.
The shortest path problem with pickup,
deliveries and time windows (SPPPDTW)
is a subproblem in the set partitioning algorithm
for the pickup delivery problem with time
windows (PDPTW) due to Desrosiers,
Dumas and Soumis15.

3.1.2 State space relaxation :

For a number of problems, christofides,
Mingozzi and Toth5,6,7 have developed branch
and bound Algorithms that obtain lower bounds
by dynamic programming on a relaxed state
space. They take a dynamic programming
algorithm for the problem under consideration
as starting point and replace it state space by
a smaller space in such a way that the recursion
over the new state space requires only
polynomical time and yields a lower bound on
the optimal solution value of the original
problem.

State space relaxation is based on a
mapping g from the original state space to a
space of smaller cardinality. If there is a transition
from S1 to S2 in the original state space, then
there must be a transition from g(S1) to g(S2)
in the new state space. We illustrate this idea
on the Traveling salesman problem with time
windows (TSPTW) [christofides, Migozzi and
Toth (7)].

With each vertex i, an anbitrary

integer i is associated, with 0 = (n+1) = 0.
The mapping is defined by
 g(S,j) = (k, j),
Where
 k S and E i S i  | |  

The new recurrence equations are:

 
d

If
If

( , , )
.
,

 
 
 









RST
 d k j d k i ti j i j A j ij( , , ) min ( ), , ),( , )       n s

for j N n{ } 

Where we redefine d(k,,j) = ej in case
d(k, , j) < ej and d(k, , j) = , in case
d(k, , j)>lj, the lower bound is now given by
 min { ( , , ) },( , ) ,j N j n A i N i j nd n j t      

This lower bound can be improved by
the use of vertex penalties and state space
modifications. Vertex penalties serve to decrease
the travel time of arcs incident to undercovered
vertices and to increase the travel time of arcs
incident to overcovered vertices; these penalties
are adjusted by subgradient optimization.
Similarly, the weights i can be modified by
subgradient optimization. he resulting branch
and bound method is able to solve problems
with up to 50 vertices.

Kolen, Rinnooy kan and Trienekens26

extend this approach to the vehicle routing
problem with time windows (VRPTW). They
use a two-level state space relaxation. At the
first level, a lower bound on the costs of a
time-constrained path from the depot to vertex
j with load q is computed.  This is done with
an adaptation of the above method for the
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traveling salesman problem with time windows
(TSPTW). The states are of the  from (t, q, j)
where q is the load of a shortest path arriving
at vertex j no later then time t. We have 0 < t
< T
where T is the scheduling horizon 0 < q < Q

where Q is the vehicle capacity and j N.

At the second level, a lower bound on the cost
of m routes with total load
  i N iq .
And different destination vertices is computed.
The states are now of the form (k, q, j), where
q is the total load of the first k routes and j is
the destination vortex of route k. Vertex penalties
are used to improve the lower bounds.
Problems with up to fifteen customers are
solved.

3.2 Set partitioning :

Vehicle routing problem and in particular
the vehicle routing problem with time windows
(VRPTW) and the pickup and delivery
problem with find windows (PDPTW) can
be reformulated as set partitioning problem,
with variables (columns) corresponding to
feasible routes.

Let R be the set of feasible routes of
the problem under consideration. For each
route r R we define r as the sum of the
costs of its arcs and
 ri (i N)
as a binary constant, equal to 1 if route r visits
customer i and o otherwise.
If xr (rR) is equal to 1,
If route r is used and 0 otherwise, the set
partitioning problem is to minimize.

 
r R r rx
   (19)

Subject to
 

r R ri rx for i N
     (20)

xr {0, 1)         for r R (21)

Although problems (9) – (18) and (19)-(21)
are equivalent, their continuous relaxations are
not. This is because the variables in the latter
problem are restricted to feasible paths in
which each customer is included or not. Any
solution to the relaxed version of (19) – (21) is
feasible solution to the relaxation of (9) – (18),
but not vice versa. We can therefore expect
to obtain better lower bound on the basis of
the set partitioning formulation.

Because of the cardinality of R. the
relaxed set partitioning problem cannot be
solved directly and column generation is used.
That is, a new column of minimum marginal
cost is generated by solving an appropriate
subproblem. If its marginal cost is negative,
then it is added to the linear program, the
problem is reoptimized and column generation
is applied again; otherwise, the current solution
to the linear program is optimal. Before
discussing results for specific vehicle routing
problem, we first describe some general
aspects of this approach.

3.2.1 The submodel :

The objective function of the subproblem
has coefficients that depend on the values of
the dual variables i (i N) of the continuous
relaxation of the set partitioning problem. The
constraints define a path subject to side
constraints but not necessarily visiting all
customers. They include (3) – (8) for the vehicle
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routing problem with time windows (VRPTW),
(3) – (5) and (8) for the multiple traveling
salesman problem with time windows (m-
TSPTW), and (11) – (18) for the pickup and
delivery problem with time windows
(PDPTW).

As we have seen in section 3.1.1
dynamic programming is a suitable method to
solve these subproblems to optimality, because
the state spaces are relatively small.

3.2.2 The optimization algorithm :

The continuous relaxation of the set
partitioning problem is solved by the simplex
Algorithm. This method produces the dual
values i that are needed for column generation
and enables easy reoptimization each time new
columns are generated.

To obtain an integral solution to the
master problem, we add cutting planes or we
use branch and bound. Each time a new
constraint is added, another round of column
generation is applied in order to solve the
modified master problem. We must restrict
ourselves to types of constraints that are
compatible with the column generation
method. For any cutting plane, the method must
be able to compute its coefficients in order to
evaluate the marginal cost of new columns.
For any branching rule, the method must be
able to exclude the columns that have become
infeasible by branching.

In case the Cij are integral, compatible
type of cut is the one that rounds the objective
up to the next integer. In the particular case
that we minimize fleet size, this cut has the
same coefficient 1 in each column; if it has

dual value , a new column is generated by
minimizing the reduced cost.

 
( , )

( ) .
i j A ij i ijc x

   

 However, we cannot use Gomory cuts or other
types of cuts where coefficients are not known
before the new column is generated.

As to branching, the usual rule to fix
a fractional variable xr to 0 or 1 is not compatible.
We can fix xr= 1 by simply deleting the
customers on route r from the subproblem. But
we cannot sin xr = 0: there is no way to prevent
route r from being generated again. Four types
of compatible branching rules have been
proposed: branching on the flow variables of
route r; branching on the position of a customer
in route r; branching by splitting time windows;
and branching on the number of vehicle of a
given type in problems with multiple vehicle
types. These rules have been listed here in
order of increasing effectiveness.

3.2.3 Acceleration techniques :

There are various ways to improve the
performance of the set partitioning approach.
First of all, the set partitioning problems that
arise in the context of vehicle routing are highly
degenerate. It is an obvious idea to improve
the convergence of the simplex method by a
perturbation strategy. Secondly, the solution of
the relaxed master problem can be accelerated
by the simultaneous generation of columns.
The solution of a subproblem by dynamic
programming produces not only a column
minimum reduced cost, but also many other
columns of negative reduced cost. Several of these
can be added. In the third place, the solution
of most of the subproblem can be greatly sped
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up by the heuristic elimination of vertices, arcs,
and states. The first columns are generated in
subnetworks, which only consist of customers
which large dual values and inexpensive arcs;
in addition, less promising states are ruled out
during the recursion. At later stages, the
elimination rules are gradually relaxed, until at
the final stage the full network and state space
are used in order to prove optimality.

3.2.4 The multi-salesman and vehicle routing
problem with time windows :

Desrosiers, Soumis and Desrochers18

propose a set partitioning approach to the
multiple traveling salesman problem with
time windows (m-TSPTW). The column
generation problem is the shortest path
problem with time windows (SPPTW), In their
algorithm, two cuts are added to the master
problem: one to round up the number of vehicles
and one to round up the total costs. After that,
branching on flow variables is applied. With
this rule, it is time consuming to achieve
optimality, even if the integrality gap is small.
They solve problem with up to 151 customers;
the solution time on a CDC cyber 173 ranges
from 100 to 1000 seconds, depending on the width
of the time windows. A recent improvement
of the algorithms is able to solve problems with
223 customers within 600 seconds. A branching
rule based on time window splitting is under
development. Desrosiers, Dumas and Soumis13

extend this algorithm to the case of multiple,
vehicle types. Several SPPTW’s are now to
be solved, one for each type of vehicle. Branching
in first done on the number of vehicle of a
given type; when this number is integral for
each types, the usual branching on flow variables
is applied. No set partitioning algorithm for the
vehicle routing problem with time windows

(PDPTW) has been proposed so far. However,
Desrochers10 presents a dynamic programming
algorithm for the shortest teat path problem
with a variety of constraints. This method is
suitable for solving the subproblems that occur
in this context.

3.2.5 The pickup and delivery problem with
time windows :

Dumas20 develops a set partitioning
approach for the pickup and delivery problem
with time windows (PDPTW). He solves
problems with 30 customers (60 vertices)
within 100 second on a CDC Cyber 173.
These problems have tight capacity constraints
(qi > Q/3) and loose time Window constraints.
Narrowing the time windows significantly
decreases the cardinality of the state space
and there by the computation time.

The subproblem in this case is the
shortest path problem with pickups, deliveries
and time window (SPPPDTW), which was
reviewed in section 3.1.1 The algorithm of
Dumas20 first branches an the number of
vehicles per type and then on flow variables.
Desrosiers, Dumas and Soumis15 replace the
latter branching rule by branching on the
position of customers in routes and obtain
improved results.

4. Approximation :

In spite of the recent success of
optimization algorithms for vehicle routing with
time windows, it is unlikely that they will be
able to solve large-scale problems. In many
situations one has to settle for algorithms that
run fast but may produce suboptimal solutions.
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In this section, we review three types of
approximation algorithms. Construction
methods try to build a feasible solution starting
from the raw data. Iterative improvement
methods start from a feasible solution and seek
to improve it through a sequence of local
modifications. Incomplete optimization
methods use a combination of enumeration of
the solution space and heuristic rules to truncate
the search. These types of methods have been
widely applied to unconstrained routing
problems. Their extension to constrained
problems has only recently become a subject
of investigation. In presenting this work, we
will concentrate on feasibility rather than
optimality aspects.

As in Section 3.1, we split the depot
(vertex O) in an ‘origin’ (vertex 0) and a
‘destination’ (Vertex n+1). In the sequel when
we refer to a route, we assume that it is given
by (0, 1, …,i, ….,n, n+1),
where I is the ith custom visited by the vehicle.
There are two quantities associated with a
subpath (h, …..,k) that play a dominant role in
the algorithm below. The possible forward shift
 Shk



is the largest increase in the departure time
Dh at h which causes no violation of the time
windows along the path (h, ….,k):
 S D thk h j k j h h i j i i


      min ( ), { }

The possible backward shift
 Shk



 is the largest decrease in the departure time
Dh at h which causes no waiting time along
the path (h, ….,k}:
 S D ehk h j k j j


  min n s

These quantities express the flexibility we have
when we want to push customers forward or
backward in time. It is not hard to see that all
values
 Shk

  and   Shk


For j = h, …., k can be computed in O(n) time.
[Savelsborgh (35)].

4.1 Construction :

In the design of construction methods,
there are two key questions:

1. Solution criterion: which customer is
selected next to be inserted into the current
solution?
2. Insertion criterion: where will it be
inserted?

While such decisions may be made at
the same time, several of the algorithms in this
section employ different criteria for selection
and insertion.

4.1.1 The vehicle routing model with time
windows :

Solomon40 was one of the first who
attempted to adopt the existing approximation
algorithms for the vehicle routing problem
(VRP) to the vehicle routing problem with
time windows (VRPTW). Much of the material
in this section is based on his work.

Savings. The savings method of clarke
and wright8 is probably the first and certainly
the best known heuristic proposed to solve the
vehicle routing problem (VRP). It is a sequential
procedure. Initially, each customer has its own
route. At each iteration, an arc is selected so
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as to combine two routes into one, on the basis
of some measure of cast saving and subject
to vehicle capacity constraints. Note that in
his case the selection criterion applies to arcs
rather than customers and that the insertion
question does not occur. In order to adapt this
procedure for the vehicle routing problem
with time windows (VRPTW), we must be
able to test the time feasible of an arc. While
in pure routing problems the direction in which
a route is traversed is usually immaterial, this
is not the case anymore in the presence of time
windows. Hence, we only consider arcs from
the last customer on one route to the first customer
on another. If two routes are combined, the
departure time on the first route do not change.
As to the second route, one necessary condition
for feasibility is that the departure time at the
first customer is no more than his latest service
time, but that is not all. The other departure
times on the route could be pushed forward,
and one of them could become infeasible. This
is where the possible forward shift enters the
picture. For any path (1, ….,n+1), a change in
the departure time at 1 is feasible if and only if
it is no more than
 S n , 

 .

By selecting of a cost effective and
time feasible arc, the modified heuristic could
link two customers whose windows are far
apart in time. This suggests a further modification
which selects arcs on the basis of the both
spatial and temporal closeness of customers,
e.q,. by a adding a waiting time penalty to the
cost saving.

Nearest neighbor. Initially a route
consists of the depot only. At each iteration,
an unvisited customer who is closest to the

current end point of the route in selected and
added to the route to become its now end point.
The selection is restricted to those customers
whose addition is feasible with respect to
capacity and time window constraints. A new
route is started any time the search fails, unless
there are no more customers to schedule. The
measure of closeness should include spatial
as well as temporal aspects Solomon40

proposes following:

   t e D t Dij j i ij i  (max , )n s
 D tj i ij  ( )d i

With 1 + 2 + 3 = 1
This measures the travel time between
customers i and j,the difference between their
respective delivery times and the urgency of
a delivery to j.

Insertion. Insertion methods treat the
selection and insertion decisions separately. We
distinguish sequential and parallel insertion
rules. The former construct the routes one by
one,  whereas the la tter build them up
simultaneously. All methods considered here
are of the sequential type. The general scheme
of an insertion method is simple. Let U be the
set of unrouted customers. For each customer
µ U, We first determine the best feasible
point iµ after which it could be inserted into
the emerging route:
i (µ, iµ) = min0 < i < n {i(µ, i)} for u U
We next select the customer µ* to be inserted
into the route:
  ( , ) min ( , )*

*    i iUn s
The insertion criterion i and selection criterion
 are still to be specified; we refer to Solomon40
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and Savelsbergh35 for a number of possible
definition which takes both spatial and
temporal aspects into account. When no more
customers can be inserted, a new route is
started, unless all customers have been route.

Insertion of µ between i and i+1 could
changes all departure time on the path (i+1….,
n+1). Again, the insertion is feasible if and only
if the change in departure time at i+1 is no
more than

 Si n 

 , .

Solomon40 concludes on the basis of
extensive computational experiments that
insertion methods outperform other type of
construction methods.

4.1.2 The pickup and delivery model with
time windows :

Jaw, Odoni, Psaraftis and Wilson24

consider a variant of the dial-a-ride problem
(DARP). Their approach seems to be applicable
to the proper dial-a-ride problem (DARP) as
well.

The customers that are to be pickup
and delivered have the following types of
service constraints. Each customer i specifies
either a desired pickup time
 Di

Or a desired delivery time
 A i ,
And a maximum travel time
 Ti ;
In addition, there is a tolerance
 U .
If customer i has specified a desired pickup

time, the actual pickup time Di+ should fall
within the time window
 [ , ]D D Ui i   ,
If he has specified a desired delivery time, the
actual delivery time Ai- should fall within the
window
 [ , ]A U Ai i   .
Moreover, his actual travel time should not
exceed his maximum travel time:
 A D Ti i i   .
Note that this information suffices to determine
two time windows
[ei+, li+] and [ei-, li-]
for each customer i. Finally, waiting time is
not allowed when the vehicle is carrying
passengers. The selection criterion is simple:
customers are selected for insertion in order
of increasing ei+. The insertion criterion is as
follows: among all feasible points of insertion
of the customer into the vehicle schedules,
choose the cheapest, if no feasible point exists,
introduce an additional vehicle. For the
identification of feasible insertions, the notion
of an active period is introduced. This is period
of time a vehicle is active between two successive
period of slack time. For convenience, we drop
the superscript indicating pick up or delivery.
For each visit to an address i during an active
period, we define the following variants of
possible backward and forward shifts.
 

i j i i iA e


  min min ,l qn s
 

i j i i iA


  min l q
 S A ei j i i i


 min l q

 S A Li j i i i


 min min , ,l qn s
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Where    and L are the duration of the slack
periods immediately preceding and following
the active period in question
  i i

 ( )
 Denotes the maximum amount of time by
which every stop preceding but not including i
can be advanced (delayed) without violating
the time windows, and
 S Si i

 ( )
denotes the maximum amount of time by
which every stop following but not including i
can be advanced (delayed).these quantities
thus indicate how much segment of an active
period can be displaced to accommodate an
additional customer. Once it is established that
same way of inserting the pickup and delivery
of customer i satisfies the time window
constraints, it must be ascertained that it satisfied
the maximum travel time constraints.

The cost measure that is used to
choose among feasible insertions is a weighted
combination of customer dissatisfaction and
resource usage.

Sexton and Bodin38,39 consider a
variant of the single-vehicle dial-a-ride problem
(DARP) in which only deadlines for the
deliveries are specified. Their solution approach
is to apply Bender decomposition to a mixed
0-1 nonlinear programming formulation, which
separates the routing and scheduling
component.

4.2 Iterative improvement :

Cross9 and Lin27 introduced the notion
of k-exchanges to improve solutions to the
traveling salesman problem (TSP) Lin and
Kernighan28 generalized the approach and

many author reported on its applications to
related problem. In the context of vehicle
routing, christofides and Eilon4 and Russell34

adapted the approach to the basic vehicle
routing problem (VRP) and Psaraftis34 used
it for the dial-a-ride problem (DARP). In this
section, we will show how time windows can
be handled in k-exchange procedures for
traveling salesman problem with time
windows (TSPTW) [Savelsbergh35]. It is not
hard, however, to extend the techniques to
multi-vehicle problem with various types of side
constraints [Savelsbergh36,37].The issue is also
addressed in another contribution to this volume
[Solomon, Baker and Schaffer42]. A k-exchange
is a substitution of k arcs of a route with k
other arcs. In the traveling salesman problem
(TSP) the processing of a single-k-exchange
takes constant time for any fixed value of k.
One only has to test whether the exchange is
profitable and does not have to bother about
feasibility. In the case of the traveling salesman
problem with time window (TSPTW), the
processing of a k-exchange may take O(n)
time. This is because a modification at one
point may affect the departure times on the
entire route, so that feasibility questions arise.
It will be indicated below that, even in the presence
of time windows, constant time suffices for
the processing of a single k-exchange.

4.2.1 The traveling salesman model with
time windows :

The number of possible k-exchange
in a given routes is O(nk). The computational
requirement of k-exchange procedures thus
increase rapidly with k, and one usually only
considers the case k=2 and k=3. A 2-exchange
replaces two arcs (i, i+1) and (j, j+1) by (i,j)
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and (i+1, j+1), thereby revering the path (i+1,
….,j). In a-3 exchange, three arcs are deleted
and there are seven possibilities to construct a
new route from the remaining segment. Or30

proposes to restrict attention to those 3-exchange
in which a string of one, two or three consecutive
customers is relocated between two others.
Note that no paths are reversed in this case
and that there are only O(n2) exchanges of this
kind.  We will illustrate the combination of the
k-exchange concept and time windows on
those or exchange in which one customers in
relocated. The basic idea of the approach is
the use of search strategy and of a number of
global variables such that, for each considered
exchange, testing its feasibility and updating
the global variables require no more than constant
time. The search strategy is as follows.
Suppose that customer i is  relocated between
j and j+1; this means that the arcs (i-1, i),
(i, i+1) and (j, j+1) are substituted by (i-1, i+1),
(j, i) and (i, j+1). The case of backward
relocation {j<i} and forward relocation {j>i}
are handled separately. In the former case, j
is successively chosen to be equal to i-1, i-
2,…,0; note that in each exchange the path
(j+1,….., i-1) of the previous exchange is
expanded with the arc (j, j+1). In the latter
case, j assume the values i+1, i+2,…,n in that
order; in each exchange the path (i+1, ….,j-1)
of the previous exchange is expanded with the
arc (j-1, j).
The global variables we need are:
1. The possible forward shift S+, which is equal

to
 S as defined abovej i 


 ,

2. The possible  backward  shift  S-, which is
equal to
 S as defined abovei i j 


, ;

3. The gain G made by going directly from i-
1 to i+1.
 G A D ti i i i        ( ), ;

4. The loss L incurred  by going from through
i to j+1
 L D t e t Aj ji i i j j    max ,,n s  

5. The waiting time W on the path (j+1,…..,i+1)
 W W

j k i k
     

During the backward search, an
exchange is feasible if
 D lk

new
k

For k = j+1,….., i-1, and potentially profitable
if
 D Di

new
i  .

The superscript ‘new’ indicate the
value if the exchange were carried out. Note
that a decrease in the departure time at i+1
does not guarantee an earlier arrival at depot,
but ‘potential profitability’ is still a suitable
criterion for accepting an exchange. In terms
of global variables, feasibility and potential
profitability are equivalent to
L < min{S+, G+W}.
The global variables are updated by
S+ : = Wj+1 + min {lj+1 – Dj+1, S+};
W : = W + Wj+1.
During the forward search, an exchange
feasible if
 D lk

new
i

And potentially, profitable if
 D Di

new
j  .

This equivalent to
L < min {S-, G}.
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The only update is
S- : = min { Dj – ej, S-}.

If follows that single exchange of this
type can be handled in constant time. The
adaptation of other type of exchange procedures
to time window constraints is conceptually,
similar but technically more complicated.

4.3 In complete optimization :

Fast approximation algorithms can also
be derived from the optimization algorithms
prevented in section 3.2. The two principal
ideas are the heuristic generation of columns
and the partial exploration of the branch and
bound tree. Heuristic generation of columns
is based on the third type of acceleration technique
mentioned in section 3.2.3. While solving the
relaxed master problem, we eliminate vertices,
arcs and states in a heuristic fashion. The
elimination rules are not retaxed, so that an
approximate solution to the linear program is
obtained. Partial exploration of the search tree
can take place in several ways. One is to obtain
an integral solution by depth-first search and
then to explore the tree for the remaining
available time. Another way is to use an in invalid
branching rule i.e., to eliminate branches on
heuristic grounds. A combination of these ideas
has been used to obtain feasible integral
solutions within two percent from the optimum
with highly reduced running times.

5. Conclusion

If one conclusion emerges from the
preceding survey, it is that Algorithm designers
have turned their attention to the development
of efficient methods that are capable of solving
large-scale routing problem subject to real life

constraints. A striking example is the set
partitioning approach, which appears to be
particularly efficient for strongly constrained
problem. The continuous relaxation of the set
partitioning formulation can be solved the use
of a column generation scheme and provides
for better bounds than the relaxation of other
formulations. Dynamic programming turns out
to be a powerful tool to generate columns. This
family of algorithms is well designed to produce
approximate solutions to problem of a realistic
size. Optimization algorithms of this type are
being used for school bus scheduling.
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