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Abstract

In this paper we have proved some common fixed point
theorems for the class of four non compatible mappings in fuzzy
metric spaces. These results are proved without exploiting the
notion of continuity and without imposing any condition on t-norm.
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1. Introduction and Preliminaries

The concept of fuzzy metric space
has been introduced and generalized by many
ways Deng3, Kaleva and Seikkala5. George
and Veeramani4 modified the concept of fuzzy
metric space introduced by Kramosil and
Michalek6. They also obtained a Hausdorff
topology for this kind of fuzzy metric space which
has very important applications in quantum
particle physics, particularly in connection with
both string and  theory9 and references
mentioned therein). Many authors have proved
fixed point and common fixed point theorems
in fuzzy metric spaces8, Pant11, Singh and
Chauhan12, O’Regan and Abbas10 obtained some
necessary and sufficient conditions for the
existence of common fixed point in fuzzy metric
spaces. Recently, Cho et al.,2 established
some fixed point theorems for mappings
satisfying generalized contractive condition in

fuzzy metric space. Our results generalize
several comparable results in existing literature
Cho et al.2, Beg and Abbas1 and references
mentioned therein.

2. Main Results

Theorem 2.1: Let (X, M, *) be a fuzzy
metric space. Let A, B, S and T be maps from
X into itself with Aa (X)  Tt (X) and Bb(X)
Ss(X) and there exists a constant  k  (0, 1)
such that
M (Aax, Bby, kt)  {M (Ssx, Tty, t), M (Aax,

Ssx, t), M (Bby, Tty, t),
M (Bby, Ssx, 2t), (Aax, Tty, t)}  (1)

For all x, y  X,  t > 0 and . and a, b, s,
t  N. Then A, B, S and T have a unique
common fixed point in X provided the pair {A,
S} or {B, T} satisfies (EA) property. One of
Aa(X), Tt(X), Bb(X), Ss(X) in a closed subset
of X and the pairs {B, T} and {A, S} are
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weakly compatible.

Proof: Suppose that a pair {B, T}
satisfies property (EA). Therefore there exists
a sequence {xn}in X such that  lim

n
 Bbxn= z =

 lim
n

 Ttxn

Now Bb(X)  Ss(X) implies that there exists a
sequence {yn} in X such that

Bbxn=Ssyn. For x=yn and y=xn,
(1) becomes.
M (Aayn, Bbxn, kt) {M (Ssyn, Ttxn, t),

M (Aayn, Ssyn, t),
M (Bbxn, Ttxn, t), M (Bbxn, Ssyn, 2t),
M (Aayn, Ttxn, t)}

Taking limit n   we obtain
 lim
n

M(Aayn, Bbxn, kt){ lim
n

M(Ssyn, Ttxn,t),

 lim
n

M(Aayn, Ssyn, t),

      lim
n

M(Bbxn,Ttxn, t), lim
n

M(Bbxn, Ssyn, 2t),

 lim
n

M (Aayn, Ttxn, t)}

  M  lim
n

 AAayn, z, kt) {M (z, z, t), M ( lim
n

Aayn, z, t), M (z, z, t),
M (z, z, 2t), M ( lim

n
Aayn, z, t)}

Since  is increasing in each of its coordinate
and   (t, t, t, t, t) > t for all
t [0, 1]

M ( lim
n

Aayn, z, kt)>M ( lim
n

Aayn, z,t)

Using by Mishra7, we have  lim
n

 AAayn =z,

Suppose that Ss(X) in a closed subspace of X.
Then z = Ssu for some u  X.
Now replacing x by u and y by x2n+1 in (1) we

have
M (Aa

u, Bbx2n+1, kt)  {M (Ss
u, Ttx2n+1, t),

M (Aa
u, Ss

u, t),
      M (Bbx2n+1, Ttx2n+1, t), M (Bbx2n+1, Ss

u, 2t),
     M (Aa

u, Ttx2n+1, t)}
Taking limits as n  we obtain
M(Aa

u, z, kt){M(z, z, t), M (Aa
u, z, t), M (z, z, t),

M (z, z, 2t), M (Aa
u, z, t)}> M (Aa

u, z, t)}

Which implies that Aau=z  Hence Aau=z = Ssu.
Since Aa(X)  Tt(X) thee exist vX such that
z = Ttv. Following the argument similar to those
given above we obtain z = Bbv = Ttv. Since u
in coincidence point of the pair {A, S}, therefore
SsAau = AaSsu and  AAz = SSz Now we claim
that Aaz = z,  if not,  then using (1) we arrive at

M (Aaz, z, kt)= M (Aaz, Bbv, kt)
{M (Ssz, Ttv, t), M (Aaz, Ssz, t),

M (Bbv, Ttv, t),
               M (Bbv, Ssz, 2t), M (Aaz, Ttv, t)}

{M (Aaz, z, t), M (Aaz, Aaz, t),
M(z, z, t)

                 M (z, Aaz, 2t), M (Aaz, z, t)},
> M (Aaz, z, t)

a Contradiction. Hence z = Aaz = Ssz.  Similarly
we can prove that z = Bbz = Ttz.
The uniqueness of z follows from (1).
Following theorem was proved in Cho et al.2 .

Let (X, M, *) be a fuzzy metric space with t *
t = t. Let A, B, S and T be map from X into
itself with Aa(X)  Tt(X) and Bb(X)  Ss(X)
and there exists a constant  k(0, 1) such that

M (Aax, Bby, kt) {M (Ssx, Tty, t), M (Aax,
Ssx, t),
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M (Bby, Tty, t), M (Bby, Ssx, 2t), M (Aax,
Tty, t)}  (2)

For all x, y,  X, t > 0 and . Then A, B,
S, and T have a unique common fixed point in
X provided the pair {A, S} and {B, T} are
compatible of Type (II) and A or B are continuous
or the pair {A, S} and {B, T} are compatible
of type (I) and S or T are continuous.

Theorem 2.2: Let (X, M, *) be a fuzzy
metric space. Let A, B, S and T be maps from
X into it self such that.

M (Aax, Bby, kt)  {M (Ssx, Tty, t), M (Aax,
Ssx, t),

M (Bby, T ty, t), M (Bby, Ssx, 2t),
M (Aax, Tty, t)}  (3)

For all x, y  X, k   (0, 1), t > 0 and a, b, s, t
N  and .
Then A, B, S and T have a unique common
fixed point in X provided the pair {A, S} and
{B, T} satisfy common (EA) property, Tt(X)
and Ss(X) are closed subset of X and the pairs
{B, T} and {A, S} are weakly compatible.

Proof: Suppose that (A, S) and (B, T)
satisfy a common (EA) property, there  exist
two sequences {xn} and {yn} such that

 lim
n

A


 axn= lim
n

Ssxn= lim
n

 Bbyn= lim
n

 Ttyn= z

For some z in X. Since Ss(X) and  Tt(X) are
closed subspace of X, therefore z = Ssu = Ttv
for Some u, v,  X. Now we claim that Aau=z.

For this replace x by u and y by yn in (3), we obtain.
M (Aau, Bbyn, kt)  {M (Ssu, Ttyn, t),

M (Aau, Ssu, t),
M (Bbyn, Ttyn, t), M (Bbyn, Ssu, 2t),

  M (Aau, Tt yn, t)}
Taking limit as n  we have
M (Aau, z, kt){M (Aau, z, t), M (Aau, Aau, t),
          M (z, z, t), M (z, Aau, 2t), M (Aau, z, t)}
M (Aau, z, kt) > M (Aau, z, kt)
Hence Aau = Z = Ssu.
Again using (3) we have
M(Ttv, Bbv, kt) = M(Aau, Bbv, kt),

{M (Ssu, Ttv t), M (Aau, Ssu, t),
     M (Bbv, Ttv, t), M (Bbv, Ssu, 2t),
         M(Aau, Ttv, t)}

           ={M (z, Ttv, t), M(z, z, t), M(Bbv, Ttv,t),
   M (Bbv, z, 2t), M (z, Ttv, t)}

         > M (Ttv, Bbv, t)
Which implies that Ttv = Bbv and hence
Aau= z = Ssu= Bbv = Ttv the rest of the proof
follows as in theorem 2.1, observe that the
corollaries 3.4, 3.5, 3.6, 3.7 as 3.8 in Cho et
al.2, can be easily improved in the light of
theorem 2.1 and 2.2.

Corollary 2.3: Let (X, M, *) be a
fuzzy metric space, where * is any continuous
t-norm. Let A, B, R, S, H and T be mappings
from X into it self with  Aa(X)  TtHh(X),
Bb(X)  SsRr(X) and there exists a constant
K  (0 ,1) such that
M (Aax, Bby, kt)  {M (SsRrx, TtHhy, t),

M (Aax, SsRrx, t),
M (Bby, TtHhy, t), M (Bby, SsRrx, 2t),
M (Aax,TtHhy, t)}

For all x, y,  X, t > 0 and . Then A, B,
R, S, H and T have a unique common fixed
point in X provided the pair {A, SR} or {B, TH}



satisfies (EA) property, one of Aa(X), TtHh(X),
Bb(X), SsRr(X) is closed subset of X and the pair
{B, TH} and {A, SR} are weakly compatible.
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