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Abstract

The use of stochastic model in the study of HIV infection, the
estimation of the likely time at which the seroconversion takes place is
an important aspect.  An individual takes some precautionary measures
with due to avoid the HIV getting transmitted and this called alertness.
The use of preventive strategy gives rise to the concept of alertness on
the part of individual who has sexual contact with unknown partner.  In
this paper the stochastic model for the estimation of time to cross the
antigenic diversity threshold and variance are derived under the assumption
that the threshold level of antigenic diversity is a random variable which
follows a Exponentiated Exponential Distribution.  The expression for
E(T) and variance are derived and Numerical Illustrations are provided.
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Notations :

Xi : A random variable denoting the increase
in the antigenic diversity arising due to
the HIV transmitted during the ith contact
X1, X2,…, Xk are continuous i.i.d. random
variables, with p.d.f. g(.) and c.d.f. G(.).

Y : A random variable representing antigenic
diversity threshold and follows exponen-
tiated exponential distribution with

parameters  and , the p.d.f. being h(.)
and c.d.f H(.).

Ui : A continuous random variable denoting
the inter-arrival times between successive
contacts with p.d.f f(.) and c.d.f F(.).

Z : The random  variable  representing  the
time between damages.

gk(.) : the p.d.f of random variable 
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Fk(.) : the convoluton of F(.)
T : a continuous random variable denoting

the time to  seroconversion  with p.d.f.
l(.) and c.d.f. L(.).

Vk(.): Probability of exactly k contacts in
(o, t].

l*(s) : is the Laplace transform of l(t).
f *(s): is the Laplace transform of f(t).

Introduction

The incidence and spread of Human
Immuno Deficiency Virus (HIV) infection and
the consequent Acquired Immuno Deficiency
Syndrome (AIDS) has created a pandemic
situation in the world all over. In the study of HIV
infection, the estimation of likely time at which
the seroconversion takes place is an important
aspect.  In doing so the time to seroconversion
is taken to be a random variable T.  It is quite
natural that a person who has homo (or) hetero
sexual contacts with an infected person
continues to have successive contacts at random
time intervals. The infected person acquires
more and more of HIV in successive contacts
and this contribute to what is called the antigenic
diversity of the HIV.  The contribution to the
antigenic diversity on successive contacts may
be interpreted as damages to the immune system.
Every individual has a threshold level of antigenic
diversity.  If the cumulative contribution on
successive contacts crosses this random level
of threshold then the seroconversion takes
place for a detailed study of antigenic diversity
threshold and its estimation one can refer to
Nowak and May6, Stilianakis et al.7.  In the
present model, the shock model and cumulative
process as discussed by Esary et al.1 is used.
In doing so, it is interpreted that at every contact
the infected person receives a random amount

of contribution to the antigenic diversity and
when the total contribution crosses the random
threshold level the seroconversion takes place.

An effective and also a powerful
method or strategy against the HIV infection used
to adopted preventive measures, so that the
possibility of getting infected is completely ruled
out. This gives rise to the concept of alertness
on the part of the individuals before the he
(or) she is exposed to the risk.  A universally
recommended strategy to avoid the possible
infection is the use condemns by any person.
In deriving this model it is assumed that a
person with alert uses the prevention strategy
and if the person is in–alert then there is a risk
of transmission.

A stochastic model for the HIV trans-
mission under alertness under the assumption
that the threshold level of antigenic diversity
is a random variable which follows a Gamma
distribution and mixed exponential distribution
has been discussed Kannan et al.2, Kannan et
al.3 and Kannan et al.4. In this paper using
the concept of alertness and preventive
strategy the stochastic model for the estimation
of expected time to seroconversion and its
variance are derived under the assumption that
the threshold level of antigenic diversity is a random
variable which follows an Exponentiated
Exponential Distribution. In this study the
theoretical results widely are substantiated
using numerical data simulated.

Model :

A person, when alert, uses the preventive
strategy and if the person is in-alert then there
is a risk of transmission.  The transmission of
HIV in successive contacts during which the
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person is in-alert, gives rise to a cumulative
damage process, which damage results into
the human immune mechanism. It results in the
change over from seronegative to seropositive
status by acquiring more and more HIV in
successive contacts.

Assumptions of the Model :

 Sexual contact is  the  only source of HIV
transmission.

 During any contact in which a person is
inalert the transmission of HIV is a sure
event.

 A person is alert in a single contact with
probability p, and inalert with  probability q,
so that p + q = 1.

 The damage caused to the immune system
due to the antigenic  diversity  is  linear and
additive.

 The total  damage  caused when  exceed a
threshold  level Y which  itself is  a random
variable, the seroconversion  occurs  and a
person is recognized as infected.

Results
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On simplification
Taking laplace transform of l(t) we get,
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Special case :

When there is no alertness, then q = 1, so

λ 2c
2λ3µµ t




In the case alertness

q 2cλ
2λ3µµ ta




Therefore ta > t and this implies that
the mean time to seroconversion is larger in
the case of alertness, which is inversely
proportional to the probability of alertness of
which is an interesting result.

            222
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2
ta qc4λ

µ 12λ4λ5µσ 


When q =1, if there is no alertness the variance
is

22

22
2
t c4λ

µ 12λ4λ5µσ 


Which are the results obtained by Kannan et
al .5
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Table 1

c
 = 0.1,  = 0.5, q = 0.5

E(T) V(T)
1 17.00 189.00
2 8.50 47.25
3 5.67 21.00
4 4.25 11.81
5 3.40 7.56
6 2.83 5.25
7 2.43 3.86
8 2.13 2.95
9 1.89 2.33
10 1.70 1.89

Figure 1

As the value c namely the parameter
of the random variable denoting interarrival
time increases then under alertness the
expected time increases then under alertness
the expected time seroconversion decreases
and also variance time to seroconversion
decreases.
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Table 2

     
             c = 1,  = 0.1, q = 0.5

E(T) V(T)
0.1 5.0 21.00
0.2 8.00 48.00
0.3 11.00 85.00
0.4 14.00 132.00
0.5 17.00 189.00
0.6 20.00 256.00
0.7 23.00 333.00
0.8 26.00 420.00
0.9 29.00 517.00

Figure 2

As the value of  which is namely the
parameter of the random variable Xi denoting
the contribution to the antigenic diversity increases
then, the expected time to seroconversion and
variance of seroconversion increases.  This is
due to the fact that g(.) is the distribution of
X(i),  the magnitude of contribution to antigenic
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diversity.  Since    ,
µ
1XE   as  increase there

is a decrease in the contribution of antigenic
diversity.  Hence mean time to seroconversion
increases, so also the value of variance of
seroconversion time.

Table 3
                  c = 1,  = 0.5 q = 0.5

E(T) V(T)

0.5 5.00 21.00

1 3.50 11.25

1.5 3.00 8.56

2 2.75 7.31

2.5 2.60 6.60

3 2.50 6.14

3.5 2.43 5.82

4 2.38 5.58

4.5 2.33 5.40

5 2.30 5.25

Figure 3

 
c = 1, m = 0.5, q=0.5
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As the parameter of the threshold
distribution  increases the mean time to
seroconversion as well as the variance time
to seroconversion decrases.

Table 4

q   
              C = 1,  = 0.5,  = 0.1

E(T) V(T)
0.1 85.00 4752.00
0.2 42.50 1181.25
0.3 28.30 525.00
0.4 21.25 295.31
0.5 17.00 189.00
0.6 14.17 131.25
0.7 12.14 96.43
0.8 10.63 73.83
0.9 9.44 58.33

Figure 4

If ‘q’ the probability of in alertness
increases the contribution to the antigenic
diversity in successive contacts will be more
and hence there is a decrease in mean time to
seroconversion and also it variance.
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