Finite Sets, Separation Axioms, and Equivalences of Open and Closed Images

CHARLES DORSETT
Texas A\&M University-Commerce

(Acceptance Date 19th July, 2012)

Abstract

Within this paper nonempty finite sets are further characterized using closed images and the R_{0} and R_{1} separation axioms, and equivalences of open and closed images are given for T_{1} and R_{0} spaces.

Key words: finiteness, open and closed images, separation axioms, and discreteness.

Subject classification: 54A05, 54C10, 54D10, 54D15.

Introduction

1. Motivation and Direction: During the Summer 2007, within an introductory graduate level topology class, the students were asked to prove or disprove the open image of a T_{0} space is T_{0}. The students' intuition was good; they believed the statement to be false, but in trying to create a counterexample, each time the students unsuccessfully started with a finite T_{0} space. Thus the question: "For finite, T_{0} spaces, must open images of the space be T_{0} ?" was raised. The investigation of this question has led to many topological characterizations of nonempty sets using open images and separation axioms including the following.

Theorem 1.1. Let X be a nonempty set. Then the following are equivalent: (a) X
is finite, (b) for each topology T on X for which (X, T) is T_{0}, each open image of (X, T) is T_{0}, (c) for each topology T on X for which (X, T) is T_{1}, each open image of (X, T) of (X, T) is T_{1}, and (d) for each topology T on X for which (X, T) is T_{2}, each open image of (X, T) is $T_{2}{ }^{2}$.

In $1943 \mathrm{~T}_{1}$ spaces were generalized to R_{0} spaces 5 and in $1961 \mathrm{~T}_{2}$ spaces were generalized to R_{1} spaces ${ }^{1}$, which raised the question: "Can nonempty finite sets be characterized using open images and the R_{0} or R_{1} separation axioms?" leading to additional discoveries.

Definition 1.1. A space (X, T) is R_{0} iff for each closed set C and each x not in C,
$\mathrm{C} \cap \mathrm{Cl}(\{\mathrm{x}\})=\phi^{5}$.
Definition 1.2. A space (X, T) is R_{1} iff for x, y in X such that $\operatorname{Cl}(\{x\}) \neq \operatorname{Cl}(\{y\})$, there exist disjoint open sets U and V such that $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}^{1}$.

Theorem 1.2. Let (X, T) be a space. Then every open image of (X, T) is R_{0} iff every open image of (X, T) is $T_{1}{ }^{3}$.

Theorem 1.3. Let X be a nonempty set. Then the following are equivalent: (a) X is finite, (b) for each topology T on X for which (X,T) is R_{0}, each open image of (X, T) is R_{0}, and (c) for each topology T on X for which (X,T) is R_{1}, each open image of (X, T) is $R_{1}{ }^{3}$.

In late February, 2012, while continuing the investigation of nonempty finite sets, open images, and separation axioms, the question surfaced of what would happen if open images were replaced by closed images? The investigation of that question includes the results below, which include a new characterization of T_{1} spaces.

Theorem 1.4. Let X be a nonempty set. Then the following are equivalent: (a) X is finite, (b) for each topology T on X for which (X, T) is T_{0}, each closed image of (X, T) is T_{0}, (c) for each T_{1} topology on X , for each closed image (Y, S) of $(\mathrm{X}, \mathrm{T}),(\mathrm{Y}, \mathrm{S})$ is T_{1} with $\mathrm{S}=\mathrm{P}(\mathrm{Y})$, the power set of Y , and (d) for each topology T on X for which (X, T) is T_{1}, each function f from (X, T) onto a space (Y, S) is closed iff it is open ${ }^{4}$.

Within the paper cited above ${ }^{4}$, T_{1} in the statement of Theorem 1.4 parts (c) and (d) was replaced by each of $\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{31 / 2}, \mathrm{~T}_{4}$, completely normal T_{1}, and metrizable.

Theorem 1.5. A space (X, T) is $\mathrm{T}_{1} \mathrm{iff}$ each closed image of (X, T) is $T_{1}{ }^{4}$.

Below the questions of what happens when T_{1} in the two results above is replaced by R_{0} and R_{1} are investigated. Because of the questions, in the characterizations above for a nonempty finite set X , requirements were made on all topologies on X satisfying certain properties, which raised the question: (1) "For a nonempty set X , what would happen if the requirements are on only one topology on X satisfying the properties?" This question is addressed below.
2. Closed Images and $\mathrm{R}_{0}, \mathrm{R}_{1}$, and Other Spaces.

Theorem 2.1. Let (X,T) be a space. Then (a) every closed image of (X, T) is R_{0} iff (b) every closed image of (X, T) is T_{1}.

Proof: Since T_{1} implies R_{0}, (b) implies (a).
(a) implies (b): Suppose there is a closed function from (X,T) onto a space (Y, S) for which (Y, S) is not T_{1}. Let u be in Y for which $\operatorname{Cl}(\{u\}) \neq\{u\}$. Let $v \in \operatorname{Cl}(\{u\}) \backslash\{u\}$. Then $\mathrm{B}=\mathrm{S} \cup\{\{\mathrm{u}\}\}$ is a base for a topology W on Y and f is a closed function from (X, T) onto (Y,W), which implies (Y,W) is R_{0}, but C $=\mathrm{Y} \backslash\{\mathrm{u}\}$ is closed in $(\mathrm{Y}, \mathrm{W}), \mathrm{u} \notin \mathrm{C}$, and $\mathrm{v} \in$ $\mathrm{Cl}_{\mathrm{w}}(\{\mathrm{u}\}) \cap \mathrm{C}$, which contradicts (Y, W) is R_{0}.

Thus each closed image of (X, T) is T_{1}.
Theorem 2.1 can be combined with Theorem 1.5 above to give an additional characterization of T_{1} spaces.

Corollary 2.1. Let (X,T) be a space. Then (X, T) is T_{1} iff every closed image of (X, T) is R_{0}.

Theorem 2.2. Let (X,T) be a space. Then (a) every closed image of (X, T) is R_{1} iff (b) every closed image of (X, T) is T_{2}.

Proof: Since T_{2} implies $\mathrm{R}_{1}{ }^{1}$, (b) implies (a).
(a) implies (b): Since R_{1} implies $\mathrm{R}_{0}{ }^{1}$, then, by Theorem 2.1, every closed image of (X, T) is R_{1} and T_{1}, which implies (X,T) is $T_{2}{ }^{1}$.

Theorem 2.3. Let X be a nonempty set. Then the following are equivalent: (a) X is finite, (b) for each topology T on X for which each closed image (Y, S) of (X, T) is $\mathrm{R}_{0}, \mathrm{~S}=$ $P(Y)$, and (c) for each topology T on X for which each closed image of (X, T) is R_{0}, each function f from (X, T) onto a space (Y, S) is closed iff it is open.

Proof: (a) implies (b): Let T be a topology on X for which each closed image (Y, S) of (X, T) is R_{0}. Then each closed image (Y, S) of (X, T) is T_{1}, which implies (X, T) is T_{1}, and, since X is finite, by Theorem 1.4, $\mathrm{S}=$ $\mathrm{P}(\mathrm{Y})$.
(b) implies (c): Let T be a topology on X for which each closed image of (X, T) is R_{0}.

Let (Y, S) be a closed image of (X, T) and let f be a function from (X, T) onto (Y, S). Then $\mathrm{S}=$ $\mathrm{P}(\mathrm{Y})$ and f is both closed and open.
(c) implies (a): Let T be a topology on X for which each closed image of (X, T) is T_{1}. Then each closed image of (X, T) is R_{0} and each function f from (X, T) onto a space (Y, S) is closed iff it is open. Thus, by Theorem 1.4, X is finite.

Theorem 2.4. Let X be a nonempty set and let P be anyone of the separation axioms R_{1}, regular, completely regular, normal R_{0}, completely normal R_{0}, and pseudometrizable. Then the following are equivalent: (a) X is finite, (b) for each topology T on X for which each closed image (Y, S) of (X, T) has separation axiom $P, S=P(Y)$, and (c) for each topology T on X for which each closed image of (X, T) has separation axiom P, each function f from (X, T) onto a space (Y,S) is closed iff it is open.

The proof is straightforward using the information given above and a proof similar to that of Theorem 2.3, and is omitted.

3. The Requirements Restricted to Only One Topology.

Theorem 3.1. Let (X,T) be a space. Then the following are equivalent: (a) $\mathrm{T}=\mathrm{P}(\mathrm{X})$, (b) for each image Y of X and function f from X onto Y , there is only one topology S on Y for which f is open, (c) for each image Y of X and function f from X onto Y, the only topology S on Y for which f is open is $S=P(Y)$, and (d) each open image of (X, T) is T_{1}.

Proof: (a) implies (b): Let Y be an
image of X . Let f be a function from X onto Y . Let S be a topology on Y such that f is open from (X,T) onto (Y,S). Since singleton sets are open in (X,T), then singleton sets are open in (Y, S), which implies $\mathrm{S}=\mathrm{P}(\mathrm{Y})$. Since f is an open function from (X, T) onto ($\mathrm{Y}, \mathrm{P}(\mathrm{Y})$), then there is only one topology on Y for which f is open.
(b) implies (c): Let Y be an image of X and let f be a function from X onto Y. Let S be a topology on Y for which f is an open function from (X, T) onto (Y, S). Since f is an open function from (X, T) onto ($\mathrm{Y}, \mathrm{P}(\mathrm{Y})$) and there is only one topology W on Y for which f is an open function from (X, Y) onto (Y, W), then $\mathrm{S}=\mathrm{P}(\mathrm{Y})$.
(c) implies (d): Let (Y,S) be an open image of (X, T). Then $S=P(Y)$ and (Y, S) is T_{1}.
(d) implies (a): Suppose $T \neq P(X)$. Let $x \in X$ such that $\{x\} \notin T$. For each open set O containing x, let $x_{O} \in O$ such that $x \neq$ x_{O} and let $\mathrm{Z}=\left\{\mathrm{x}_{\mathrm{O}}: \mathrm{x} \in \mathrm{O} \in \mathrm{T}\right\}$. Let $\mathrm{z} \notin \mathrm{X}$ and let $\mathrm{Y}=\{\mathrm{z}\} \cup(\mathrm{X} \backslash \mathrm{Z})$. Let S be the topology on Y with base $\{\mathrm{U} \in \mathrm{T}: \mathrm{U} \cap \mathrm{Z}=\phi\}$ $\cup\{\{z\}\} \cup\{(\mathrm{U} \backslash \mathrm{Z}) \cup\{\mathrm{z}\}: \mathrm{U} \in \mathrm{T}$ and $\mathrm{U} \cap$ $\mathrm{Z} \neq \phi\}$. Let f be the function from (X, T) onto (Y, S) defined by $\mathrm{f}(\mathrm{u})=\mathrm{u}$ if $\mathrm{u} \notin \mathrm{Z}$ and $\mathrm{f}(\mathrm{u})=\mathrm{z}$ for all $u \in Z$. Then f is open and onto, but every S -open set containing x contains z and (Y, S) is not T_{1}, which is a contradiction. Hence $\mathrm{T}=\mathrm{P}(\mathrm{X})$.

Theorem 3.2. Let (X,T) be a space. Then the following are equivalent: (a) $\mathrm{T}=\mathrm{P}(\mathrm{X})$, (b) each open image of (X, T) is R_{0}, and (c) (X, T) is T_{1} and a function f from (X, T) onto a
space (Y, S) is open iff it is closed.
Proof: Clearly from the information and arguments above (a) and (b) are equivalent and (a) implies (c).
(c) implies (a): Let (Y,S) be an open image of the T_{1} space (X, T). Let f be an open function from (X, T) onto (Y, S). Then f is a closed function from (X, T) onto (Y, S), which implies (Y, S) is T_{1}. Thus every open image of (X, T) is T_{1} and by Theorem 3.1., $\mathrm{T}=\mathrm{P}(\mathrm{X})$.

Theorem 3.3. Let (X,T) be a space. Then the following are equivalent: (a) T is the indiscrete topology on X and (b) for each image Y of X and each function f from X onto Y , for each topology S on Y , f , a function from (X, T) onto (Y, S), is simultaneously open and closed.

Proof: (a) implies (b): Let Y be an image of X and let f be a function from X onto Y. Let S be a topology on Y. Since the only open sets in (X,T) are the empty set and X , then f , a function from (X, T) onto (Y, S) is open. Similarly f is closed.
(b) implies (a): Suppose T is not the indiscrete topology on X. Let S be the indiscrete topology on X . Then the identity function from (X, T) onto (X, S) is neither open nor closed, which is a contradiction.

Theorem 3.4. Let (X,T) be a space. Then the following are equivalent: (a) $\mathrm{T}=\mathrm{P}(\mathrm{X})$ or T is the indiscrete topology on X and (b) (X, T) is R_{0} and a function f from (X, T) onto a space (Y, S) is open iff it is closed.

Proof: (a) implies (b):If $\mathrm{T}=\mathrm{P}(\mathrm{X})$, then by Theorem 3.2, (X, T) is T_{1} and thus R_{0} and a function f from (X, T) onto a space (Y, S) is open iff it is closed. If T is the indiscrete topology on X , then (X, T) is R_{0} and, by Theorem 3.3, the remainder of part (b) is satisfied.
(b) implies (a): If (X, T) is T_{1}, then by Theorem 3.2, $\mathrm{T}=\mathrm{P}(\mathrm{X})$. Thus consider the case that (X, T) is R_{0} and not T_{1}. Let $x \in X$ such that $\mathrm{Cl}(\{x\})$ is not $\{x\}$. Then $X=\operatorname{Cl}(\{x\})$, for suppose not. Let $u \in \mathrm{Cl}(\{x\}\}, \mathrm{u} \neq \mathrm{x}$. Let $\mathrm{v} \in \mathrm{X} \backslash \mathrm{Cl}(\{\mathrm{x}\})$. Since (X, T) is $\mathrm{R}_{0}, \mathrm{Cl}(\{\mathrm{x}\}) \cap$ $\mathrm{Cl}(\{\mathrm{v}\})=\phi$. Let $\mathrm{Y}=\mathrm{X} \backslash \mathrm{Cl}(\{v\})$ and let S be the topology on Y with base $\{\mathrm{O} \in \mathrm{T}: \mathrm{O} \subseteq \mathrm{X}$ $\backslash \mathrm{Cl}(\{\mathrm{v}\})\} \cup\{\{\mathrm{x}\}\}$ and let f be the function from (X, T) onto (Y, S) defined by $f(w)=w$ for all $w \in Y$ and $f(w)=x$ for all $w \in \operatorname{Cl}(\{v\})$. Let $\mathrm{O} \in \mathrm{T}$. If $\mathrm{O} \subseteq \mathrm{Y}$, then $\mathrm{f}(\mathrm{O})=\mathrm{O} \in \mathrm{S}$. Thus consider the case that $\mathrm{O} \cap \mathrm{Cl}(\{v\}) \neq$ ϕ. Then $\mathrm{f}(\mathrm{O})=(\mathrm{O} \backslash \mathrm{Cl}(\{\mathrm{v}\}) \cup\{\mathrm{x}\} \in \mathrm{S}$. Thus f is open, but not closed; $\mathrm{f}(\mathrm{Cl}(\{\mathrm{v}\}))=\{\mathrm{x}\}$ and every S-open set containing u contains x . Hence $\mathrm{Cl}(\{\mathrm{x}\})=\mathrm{X}$. Let C be a nonempty closed set in (X, T). Let $\mathrm{z} \in \mathrm{C} \cap \mathrm{Cl}(\{\mathrm{x}\})$. Since (X, T) is $\mathrm{R}_{0}, \mathrm{Cl}(\{\mathrm{z}\})=\mathrm{Cl}(\{\mathrm{x}\})=\mathrm{X}$ and since $\mathrm{Cl}(\{\mathrm{z}\}) \subseteq \mathrm{C}, \mathrm{C}=\mathrm{X}$. Thus T is the indiscrete topology on X .

As in the case of Theorem 2.4 above, the information and proofs methods above can be used to give the next result in this paper, which is given without proof.

Theorem 3.5. Let X be a nonempty
set and let P be anyone of the separation axioms R_{1}, regular, completely regular, normal R_{0}, completely normal R_{0}, and pseudometrizable. Then the following are equivalent: (a) $\mathrm{T}=\mathrm{P}(\mathrm{X})$ or T is the indiscrete topology on X and (b) (X, T) has separation axiom P and a function f from (X, T) onto a space (Y, S) is open iff it is closed.

There are non- R_{0} spaces for which a function f from (X, T) onto a space (Y, S) is open iff it is closed. A place to look for such an example would be topological spaces with two distinct elements.

References

1. A. Davis, "Indexed Systems of Neighborhoods for General Topological Spaces," The Amer. Math. Monthly, 68, 886 - 893 (1961).
2. C. Dorsett, "Topological Characterizations of Nonempty Finite Sets Using Open Images and Separation Axioms," Ultra Scientist, 23(2)A, 451-454 (2011).
3. _____, "More on Open Images and Topological Characterizations of Finite Sets," Ultra Scientist, 21(1), 289-293 (2009).
4. \qquad , "Finite Sets, Closed Images, and Separation Axioms," accepted by Ultra Scientist.
5. N. Shanin, "On Separations in Topological Spaces," Akademiia Nauk SSSR Comptes Rendus (Doklady), 48, 110-113 (1943).
