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Abstract

In this paper a Closedown time concent is introduced in a Bulk
queuing model closedown time dependent a MX/G(a,b)/queuing system
with multiple vacation is considered. After completing a service, if the
queue length is  , where  <a, then the server performs closedown
work. After that the server leaves for multiple vacation of random length,
irrespective of queue length. After a vacation, when it returns. If the
queue length is less than ‘a’, it leaves for another vacation and so on,
until he finds ‘a’ customers in the queue. After a vacation, if the server
finds at least ‘a’ customers waiting for service, say , then he serves a
batch of size min (,b) customers, where b >a. Various Characteristics of
the queueing system and a cost model with the numerical result for a
particular case of the model are presented in this paper.
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1.0 Introduction

Server vacation models are useful for
the systems in which a server wants to utilize
the idle time for different purposes. Application
of server vacation models can be found in
manufacturing systems, designing of local area
networks and data communication systems
etc.

Queueing problems with server vacations

have been analysed by various authors with
several combinations. Survey on queueing
systems with server vacations can be found
in Doshi, B.T.2. Lee, H.S.6 has developed a
procedure to calculate the system size probabilities
for a bulk queueing model. Lee et al.8 have
analysed a batch arrival queue with N-policy,
but considered single service and single
vacation only. A MX/G/1 queue with N-policy
and multiple vacations is analysed by Lee et
al.7, in which arrivals occur in bulk and servi e
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is done one at a time, Chae, K.C. and Lee,
H.W.3, have analysed a MX/G/1 vacation model
with N-policy and discussed heuristic interpre-
tation of mean waiting time. Krishna Reddy
et al.5 have analysed a bulk queueing model
and multiple vacations with setup time. They
derived the expected number of customers in
the queue at an arbitrary time epoch and
obtained other measures. Arumuganathan, R.
analyses1 some bulk queueing systems with
multiple vacations and presented various
performance measures. He has given an analytic
approach to express the arbitrary constants in
a compact form. For further study on vacation
models one can refer the book by Takagi10.

However, there has been a very few
works on queueing systems with closedown
time. A M/G/1 queue is analysed by Takagi10,
considering closedown time and setup time.
He obtained performance measures too. It is
observed that most of the studies on vacation
queues are concentrated only on single server
or single arrival and single vacation. Once the
arrival occurs in bulk one can expect that the
service can also be done in bulk.

This paper concentrations such a
queueing system with closedown time.
Dependent bulk queue with multiple vacations.
In practice one can expect that the server
require some amount of closedown time after
completing the service. That is, after completing
a service, if the queue length is  < a, then the
server performs closedown work. After that,
the server leaves for multiple vacations of
random length, irrespective of queue length.
When he returns, if the queue length is less
than ‘a’, he leaves for another vacation and
so on, until he finds ‘a’ customers in the queue.

However, if the server finds at least ‘a’ customers
waiting for service, say  (>a), then he serves
a batch of min (,b) customers, where b > a.

It may be remarked here that our paper
addresses the following points. Closedown time
concept is introduced in a bulk queueing model.
We obtain probability generating function of
queue length distributions at an arbitrary time
epoch. We have developed a cost model for the
proposed queueing system. Important contribution
is the study of cost model for a practical situation
and how the results are useful regarding the
decision making to optimize the cost.

The paper is organized as follows: in
Section 2.0, we discuss the queueing problem
with practical example and develop the system
equations. In Section 3.0, we obtain probability
generating function of the queue length distribution
in a  steady state condition and various
performance measures of the queueing system
is also be presented. Cost model is obtained
analytically in Section. 4.0 A computational
study is presented in Section 5.0. Conclusions
and scope for further research are given in
Section 6.0.

2.0 Description of the Model and General
Equations :

We consider a situation in a Globe
Valve manufacturing industry where the single
server model is applied. In Globe Valve
manufacturing industry, after turning operation
the components arrive from job shop in batches
to CNC turning center for facing and turning
processes. The operator of CNC turning center
starts the process only if the minimum batch
quantity available. After processing a batch, if
the number of components is not sufficient to
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process, then the operator leaves for arranging
the toolings, writing the coding etc. to utilize
his idle time. Before leaving, the operator must
perform the works like closing the door,
checking the toolings and etc. When the
operator returns to CNC turning center, if the
number of available components is less than a
batch quantity, he remains in other works
continuously until he finds enough quantity.

The above process can be modeled
as follows. After completing a service, if the
queue length is , where  < a, then the server
performs closedown work. Then the server
leaves for multiple vacation of random length,
irrespective of queue length. After a vacation.
When he returns, if the queue length is less
than ‘a’, he leaves for another vacation and
so on, until he finds ‘a’ customers in the queue.
However, on his return if the server finds at
least ‘a’ customers waiting for service, say ,
then he serves a batch of min (,b) customers,
where b > a.

Let X be the group size random variable
of the arrival, gk be the probability that ‘k’
customers arrive in a batch and X (z) be its
probability generating function. Let S (.), V
(.) and C (.) be the cumulative distribution of
the service time, vacation time and closedown
time respectively. s (x), v (x) and c (x) be the
probability density function of service time,
vacation time and closedown time respectively.
At an arbitrary time, S0(t) denotes the
remaining service time of a server in a batch,
V0(t), C0(t) denotes the remaining vacation
time, closedown time of a server respectively.
Let us denote the Laplace-Stiltje’s transforms
of S, V and C and  respectively.

Using Supplementary variables one
can convert no-Markovian models into Markovian
models. The Supplementary variables technique
introduced by Cox, D.R.4 was followed by Lee,
H.S.6. He introduced an effective techniques
for solving queueing models using supplementary
variables. We use the technique that procedure
for solving our model.
We define
     }2{]1[0tY  if the server is on (busy)
[closedown job] {vacation}
Z (t) = j if the sever is on jth vacation
Ns (t) = Number of customers in the server
Nq (t) = Number of customers in the queue.

Let
         tSx,jtN,itNsPdtt,xP 0

qij 

    ,0j,bxa,0tY,dtx 
which means that there are ‘i’ customers under
service, ‘j’ customers in the queue, the server
is busy with remaining service time x. In a
similar manner we define.

       xtVx,jtPqPdtt,xQ 0
jn 

     .1j,0n,jtz,2tY,dt 

       xtCx,ntNqPdtt,xC 0
n 

   .0n,1tY,dt 

We develop the system size equations. These
equations provide the basis for the analysis
given in sequel. These equations are obtained
at time t + t considering all possibilities. One
can not that when time t increased by t, the
remaining service time, vacation time or
closedown time will be reduced by x- t.



              txst,0Qtxst,0Pt1t,xPtt,txP 0l
1l

mi
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0i0i  





 bia  (2.0.1)

 
       bia,1jtt,xPt1t,xPtt,txP gkkij

j

1k
ijij  


 (2.0.2)

 
       tt,xPt1t,xPtt,txP gkkbj

j

1k
bjbj  




        txst,0Qtxst,0P jlb
1l

jmb

b

am
 







       1j   (2.0.3)

          txct,0Pt1t,xCtt,txC mn

b

am
nn  



   1antt,xC gkkn

n

1k
 


 (2.0.4)

       t t,xCt1t,xCtt,txC gkkn

an

1k
nn  




 ,    an  (2.0.5)

          txvt,0Ct1t,xQtt,txQ 01010  (2.0.6)

          txvt,0Ct1t,xQtt,txQ nn1n1 

   1n,tt,xQ gkkn1

n

1k
 


 (2.0.7)

         txvt,0Qt1t,xQtt,txQ 10j0j0j    0j   (2.0.8)

          txvt,0Qt1t,xQtt,txQ n1jnjjn  

   .2j,1an,tt,xQ gkkjn

n

1k
 


 (2.0.9)

        .2j,an,t,xQt1t,xQtt,txQ gkknj

n

1k
njjn  


    (2.0.10)

3.0 Queue size Distribution
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Dividing the equations (2.0.1-2.0.10) by t  and letting the limit  ,0t   the steady
state queue size equations are obtained as

           xs0Qxs0PxPxP 0l
1l

mi

b

am
0i

'
0,i 





  bia  (3.0.1)

 
      1j,1biaxPxPxP ,kgkmj

j

1k
ij

'
j,i  


 (3.0.2)

        xs0PxPxP jmb

b

am
bj

'
bj 




 
      1j,xs0QxP jlb

1l
gkkbj

j

1k
 







 (3.0.3)

           1anxCxc0PxCxC gkkn

n

1k
mn

b

am
n

'
n  


 (3.0.4)

       anxCxCxC gkkn

an

1k
n

'
n  




 (3.0.5)

        xv0CxQxQ 010
'
10  (3.0.6)

         xv0CxQxQxQ ngkkn1

n

1k
n1

'
n1  


     0n  (3.0.7)

         2jxv0QxQxQ 0,1j0j
'
0j   (3.0.8)

           1anxQxv0QxQxQ gkkjn

n

1k
0,1jjn

'
jn  


  (3.0.9)

       an,2jxQxQxQ gkkjn

n

1k
jn

'
jn  


 (3.0.10)

The Laplace Stiltje’s transforms of       xCand,xQ,xP njnij  are defined as follows

 
            dxxCeC,dxxQeQ,dxxPeP n

x

0
njn

x

0
jnij

x

0
in










 

Taking Laplace Stiltje’s transform on both sides of the equation (3.0.1-3.0.2), we get
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               biaS0QS0PP0PP lj
1l

mi

b

am
0i0i0i  




(3.0.11)

 
        1j,1biaPP0PP gkkji

j

1k
jiijji  


 (3.0.12)

 
            gkkbj

j

1k
jmb

b

am
jbjbjb PS0PP0PP  







     1jS0Q jlb
1l

 




 (3.0.13)

 
            1anCS0PC0CC gkkn

j

1k
mn

b

am
nnn  


    (3.0.14)

         anCC0CC gkkn

n

1k
nnn  


 (3.0.15)

           V0CQ0QQ 0101010 (3.0.16)

            

 V0CQQ0QQ ngkkn1

n

1k
10n1n1  0n   (3.0.17)

           2jV0QQ0QQ 10j0j0j0j   (3.0.18)
             ,QV0QQ0QQ gkkjn

n

1k
n1jjnjnjn  


 

 2j,1an  (3.0.19)
         2j,anQQ0QQ gkkjn

n

1k
jnjnjn  


 (3.0.20)

3.1 PGF of queue length distribution :
To apply the technique of Lee, H.S.6, we define the probability generating functions as

follows,

         bia,z0P0,zP,zP,zP j
ij

0j
i

j
ji

0j
i  









        ,z0Q0,zQ,zQ,zQ j
lj

1l
j

j
lj

1l
j 









  1j   

         ,z0C0,zC,z0C,zC n
n

0n

n
n

0n









   (3.1.1)
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Multiplying (3.0.16) by z0 and (3.0.17) by
  ,1nzn   summing up from n = 0 to  and
using (3.1.1), we get
            V0,zC0,zQ,zQzX 11

 (3.1.2)
Multiplying (3.0.18) by z0 (3.0.19) by
  1an1z n  and (3.0.20) by   ,anz n 
summing up from n = 0 to  and using (3.1.1),
we get
       0,zQ,zQzX jj 

       .2j,z0QV n
n1j

1a

0n

 




  (3.1.3)

Multiplying (3.0.14) by   ,1an1zn 

 ,anzby)15.0.3( n   summing up from
n = 0 to   and using (3.1.1), we get 

      0,zC,,zCzX 
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 (3.1.4)

Multiplying (3.0.11) by z0, (3.0.12) by zj (j> 1),
taking the summation from j = 0 to  and using
(3.1.1), we get
         S0,zP,zPzX ii 
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Multiplying (3.0.11) by z0, (3.0.13) by zj (j> 1),
taking the summation from j = 0 to  and using
(3.1.1), we get
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By substituting  zX  in the equation
(3.1.2) – (3.1.6), we get

       0,zCzXV0,zQ1       (3.1.7)
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Now using (3.1.7) in (3.1.2), we get,
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(3.1.12)
From (3.1.8) and (3.1.3)
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From (3.1.9) and (3.1.4), we have
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(3.1.14)
from the equation (3.1.10) and (3.1.5), we get,
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Similarly, from (3.1.9) and (3.1.4), we have
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Let P (z) be the PGF of the queue
size at an arbitrary time epoch is the sum of
PGF of queue size at service completion epoch,

vacation completion epoch, closedown completion
epoch, then
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  (3.1.17)
By substituting  = 0 in the equation (3.1.12)
– (3.1.16) then the equation (3.1.17) becomes
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 (3.1.18)
Let us define,
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as the probabilities of the number of customers
in queue at service completion epoch and
vacation completion epoch respectively.
Let  ,qpc iii 
By using (3.1.19), the equation (3.1.18) can
be simplified as
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Which represents the PGF of number of
customers in queue at an arbitrary time epoch.

3.2 Steady state condition :

The probability generating function has
to satisfy p (1) = 1. In order to satisfy this
condition applying L’ Hospital’s rule and evaluating
  ,zPLt

jz
 then equating the expression to 1,

we have,
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    SEXEb 
since pi, qi are probabilities of ‘i’ customers
being in the queue, it follows that left hand
side of the above expression must be positive.
Thus P (1) = 1 is satisfied iff bE(X) E(S)>0,
if E(X) E(S)/b then  is the condition
to be satisfied for the existence of steady state
for the model under consideration.

3.3 Computational aspects :

Equation (3.1.9) has b+a unknowns p0,
p1, p2,..., pa-1, q0, q1, q2,...qa-1, ca, ca+1, cb-1. We
develop the following theorem to express qi in

terms of pi, in such a way that numerator has
only b constants. Now equation (3.1.20) gives
the PGF of the number of customers involving
only “b” unknowns. By Rouche’s theorem of
complex variables, it can be proved that
   zXSz b   has b-1 zeros inside and
one on the unit circle | z | = 1. Since P (z) is analytic
within and on the unit circle, the numerator
must vanish at these points, which gives b
equations in b unknowns. We can solve these
equations by any suitable numerical techniques.

Theorem 1.
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also  s'ands' ii   are the probabilities of
the ‘i’ customers arrive during vacation time
and closedown time respectively.

Proof. Using the equation (3.1.7) –
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equation the coefficients of zn on both sides of
the above equation for n=0,1,2,.....,a-1 we have
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on solving for qn, we get
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Coefficient of pn in qn is 
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hence by induction, the theorem follows.

Particular Case:

When closedown time is zero, the
equation (3.1.17) reduces to
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 (3.3.1)

Equation (3.3.1) gives the queue size distribution
of MX/G(a,b)/1 queueing system with multiple
vacations. The result coincides with queue size
distribution of Arumuganathan,1 R.

3.4 Performance measures :
3.4.1 Expected queue length :

The expected queue length E (Q) at
an arbitrary time epoch is obtained by differen-
tiating P (z) at z = 1 and given by
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The functions  
654321 fandf,f,f,f,f  are

given by

   ,1S1T1S2TS,Xf1     1S2TS,Xf 2  ,
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where
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    ,SEXE1S     ,SE1X.SE.2X.2S 222
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 .1''X2X 

3.4.2 Expected length of busy period :

Let B be the busy period random
variable. We define the random variable J as
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  ,servicefirsttheaftercustomers'a'thanlessfindsservertheif,0
.servicefirsttheaftercustomers'a'leastatfindsservertheif,1J

Now expected length of busy period is given by
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where E (S) is the mean service time.
Solving for E (B) we get,
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3.4.3 Expected length of idle period :

Let I be the random variable. Then
the expected length of idle period is given by,
E (I)=E (I1)+ E(C). Where I1 is the random
variable denoting the “Idle period due to multiple
vacation process”, E (C) is the expected
closedown time. We define the random
variable U as,

  ,0
,1J

,vacationfirsttheaftercustomers'a'leastatfindsservertheif
.vacationfirsttheaftercustomers'a'thanlessfindsservertheif

Now the expected length of idle period of
multiple vacations E(I1) is given by
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Solving for E (I1) we have,
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From equation (3.1.7) we can get,
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where  s',s' ii   are the probabilities that ‘i’
customers during vacation and closedown
time. Now the expected idle period E(I) is
obtained as

E(I) = E(I1) + E(C).

4.0 Cost Model :

Our queueing model has a bulk service
rule with single server. The customers have
to wait if sufficient batch quantity is not available,
in such case the server will be on vacation or
on closedown work. By considering this
situation of customers waiting and the effective



utilization of the operator and the machine, it
is essential to have an optimal threshold value
for a batch quantity. We develop a cost model
through which the total costs involved in the
system can be minimised.

We derive an expression for finding
the total average cost with the following
assumptions: Let Cs be the start up cost, Ch be the
holding cost per customer. Co be the operating
cost per unit time, Cr be the reward per unit
time due to vacation and Cu be the Closedown
cost per unit time. The length of cycle is the sum
of the idle period busy period, Now, the expected
length of cycle; E (Tc), is obtained as,
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The total average cost per unit is given by,
  Total average cost = start up cost per cycle

  -Holding cost of number of customer
in the queue
     +operating cost* +  Closedown time cost
     - reward due to Vacation per cycle .

Total average cost =
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where  = AE(S)E(X)/b.
The significance of the cost model will

be discussed with practical example in the
next section.
5.0 Illustrative Example :

To illustrate the impact of proposed
model we analyse the model numerically.

In the Globe Valve manufacturing
industry, the components arrive in bulk from
job shop follows Poisson distribution to CNC
turning center, whose service follows an
exponential distribution. At a time 10 components
can be handled by CNC turning center. After
the service. if the operator finds that the number
of components available is less than the
threshold value he performs closedown work.

The above system can be modeled as
closedown times depending MX/G(a,b)/1
queueing system with multiple vacations. If the
CNC machine starts with threshold value l(the
minimum capacity), the operating cost will be
more and if we fix the threshold value 10 (the
maximum capacity) due to that holding cost /
vacation cost the total average cost will increases.
We wish to obtain the optimum threshold value.

The unknown probabilities of the
queue size distribution are computed using
numerical techniques. Using Matlab software9,
the zeros of the function    zXSz b   are
obtained and simultaneous equations are solved.

With the following parameters we
analyse the above queueing system
(i) Service time distribution is K-Erlang

distribution with k = 2, f-L = 5.
(ii) Batch arrival distribution is geometric.
(iii) Vacation time and Closedown time are

exponential with parameters (= 10, (=
7 and
Startup cost: Rs. 4.00
Holding cost per customer: Rs. 0.50
Operating cost per unit time: Rs. 5.00
Reward per unit time due to Rs. 1.00
multiple vacations:
Closedown time cost per unit Rs. 0.25
time.
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      The values of the above parameters
are justified with test of goodness of fit5.

The numerical results for various
threshold values with b = 10 are presented in
Table 1. A figure for threshold values Vs total
average cost was also presented in Figure 1.
From the Table 1 and Figure 1 it is clear that,
for a CNC turning center with the capacity of
10 components at a time, the management has
to fix, the threshold value as 3 to minimize the
total average cost7-10.

 

Figure 1. Threshold value Vs Total
average cost.

Table 1. Performance measures and Total average cost
Unknown Probabilities Total

a 1 3 5 7 9 E(Q) E(B) E(I) Average
Cost

1 0.7813 0.2876 0.1193 0.0504 0.0216 1.47 0.512 0.2026 5.6797
2 0.5922 0.361 0.1392 0.0549 0.0221 1.5329 0.4748 0.2443 5.6229
3 0.4726 0.1838 0.182 0.068 0.0259 1.8418 0.4667 0.2694 5.5862
4 0.39 0.1533 0.2553 0.0921 0.0337 2.3017 0.4684 0.2818 5.6188
5 0.3289 0.1316 0.1172 0.1321 0.0471 2.8715 0.4738 0.2864 5.7091
6 0.2801 0.1158 0.1032 0.1967 0.069 3.5385 0.4804 0.2868 5.8438
7 0.2378 0.1041 0.0929 0.0871 0.1044 4.3107 0.4868 0.2851 6.0167
8 0.1967 0.0957 0.0858 0.0802 0.1624 5.2194 0.4925 0.2828 6.231
9 0.1509 0.0904 0.0815 0.0758 0.0727 6.3341 0.497 0.2807 6.5016
10 0.0913 0.0886 0.0805 0.0743 0.0707 7.8011 0.4998 0.2792 6.8642

   Threshold value, E (Q)-Expected queue length, E (B) -Expected length of busy period,
E (I)-Expected idle time

6.0 Conclusion

In this paper a closedown times
depending a MX/G(a,b)/1 queineg system with
multiple vacations is considered. Probability
generating function of queue size at an arbitrary
time epoch and various performance measures
are obtained. We analysed the impact of cost

model numerically to a practical situation for
decision making process. It is left for future
research that effect of considering set up
period. Cost model analysed in this paper can
be used to analyse a similar model with setup
period and N-Policy. Further the PGF of queue
size can be decomposed at various epochs in
to several factors.
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