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Abstract

Lowndes4,3 have obtained the solution of some dual series
equations involving laguerre polynoimials and then solved triple series
equations involving laguerre polynomials. Singh, Rokne and Dhaliwal9

obtained closed form solution of triple series equations involving
Laguerre polynomials and Srivastava10 have also obtained the solutions
of certain dual series equations involving Laguerre polynomials.
In the present paper, an exact solution has been obtained for the
simultaneous five tuple series equations involving Laguerre polynomials
by Noble’s8 modified multiplying factor technique.
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1. Introduction

In the present paper, an exact solution of the simultaneous five tuple series equations
has been given:

( )

1
( ) ( ), 0

( 1)

s
nj

ij ni p i
n o j

A
a L x u x x a

ni p







 

  
   

 
(1.1)



420 P.K. Mathur, et al.

( 1)

1
( ) ( ),

( )

s
nj

ij ni p i
n o j

A
b L x v x a x b

ni p
 

 


 


 

  
     (1.2)

( 1)

1
( ) ( ),

( )

s
nj

ij ni p i
n o j

A
a L x w x b x c

ni p
 

 


 


 

  
           (1.3)

( 1)

1
( ) ( ),

( )

s
nj

ij ni p i
n o j

A
a L x y x c x d

ni p
 

 


 


 

  
     (1.4)

 

1
( ) ( ),

( )

s
nj

ij ni p i
n o j

A
b L x z x d x

ni p


 




 

   
    (1.5)

i  1, 2,3, ....,s 
where, 1 1 –  m, 1 0             1 1 –  m, 1 0             , m  is a positive integer,,

p  is an arbitrary non-negative integer, ija , ijb , c   are known constants;, u

v  (x) and z  (x)  are prescribed functions and
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is the Laguerre polynomial1-7 of order   and degree n  in x .

2. Priliminary Results :

The following results are required in our investigation:
(i) The orthogonality property of the Laguerre polynomials is given by Erdelyi:
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where ,m n is the kronecker delta.

(ii) Formula (27), pp. 190 in the form:
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(iii) The following forms1-11 of the known results of Erdelyi {pp. 191(30)} and {pp. 405(20)}:
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where, 1, 0     and
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where 01   .

3. Solution of quadruple series equations :

Multiplying equation   [3.3] by

,)( 2 mxx   where m  is a positive integer,,

and equation [3.3] by xe (x ) ,- s - a - b- h
integrating them with respect to x  over the

intervals (0, )  and ( , )   respectively, we
find on using [3.3] and [3.3], that
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wher e, 0 , 1, 1, 1,2,3,.........., ;a m i s        

0 , 1, 1, 1,2,3,.........., ;a m i s        and
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where, , 1 0, 1,2,3,.......,c i s         

, 1 0, 1,2,3,.......,c i s       .
Now multiplying equation [3.3] by

,1 m differentiating both sides m  times

with respect to ,and using the formula [3.3],
we thus find7-11
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where, ije are the element of the matrix

1

ij ijb a


        and 0 , 1,a    



1,m    1,2,3,......,i s .
From [3.3]
we have

 L  

 (x) =  w  (x)                                (3.4)

Where, e  are the elements of the matrix

 and b < x < c , 

i = 1,2,…………….,s.

we have    L

 (x) =  y (x)   (3.5)

Where, f  are the elements of the matrix

 and c < x < d , 

i = 1,2,…………….,s.

Now, the left hand sides of the
equations [3.3], [1.2] , [3.4] , [3.5]and [3.2] are
identical and hence on using the orthogonality
relation [3.3], we obtain the solution of series
equations [3.3], [1.2], [3.4], [35] and [3.2] in
the form:

A   d     

where, , {0,1,2,...........}, 1,2,3,.........., ;n p j s 

, {0,1,2,...........}, 1,2,3,.........., ;n p j s  ijd  are the element of the

matrix 1[ ]ijb  ,           (3.6)

and 2

0
( ) ( ) ( )

m
m

i im
dU x x u x dx

d
   


  

(3.7)
V  =  (x) (3.8)

W  (x) = w (x) (3.9)

 Y           (3.10)
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       provided that 1 1 m      

and 1 0, m       being a positive
integer. Where i = 1,2,……...……, s.
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