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Abstract

Knebelman1 studied and defined collineations and motions in
generalised spaces. Levine3 studied motions in linearly connected two
dimensional spaces. Takano2, studied on the existence of affine motion
in a space with recurrent curvature tensor. Further, Negi and Rawat6

studied affine motion in an almost Tachibana recurrent space. Rawat
and Dobhal9, studied on Projective motion in a Tachibana symmetric space
.

 In the present paper, we have studied Affine motion, Projective
motion, Conformal motion, Integrability conditions of Killing equations
also several theorems have been established and proved therein.
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1. Motions in a Riemannian space.

Consider an n-dimensional Riemannian
space  Vn covered by a set of neighbourhoods
with Coordinates  x and endowed with the
fundamental quadratic differential form

 (1.1)

where the Greek indices x, ,v, ... ... ...,
run over the range 1, 2 ,3 ,        … n .

In the Vn referred to  x, we consider
a point transformation

;  

 (1.2)
which establishes a one-to-one correspondence
between the points of a region R and those of
some other region *R, where  stands for the

partial derivation   .

During this point transformation, a
point  x in R is carried to a point   * x  in *R
and a point  x + d x in R to a point * x+d* x

in *R .
If the distance d*s between two

displaced points  * x and * x+d* x is always
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equal to the distance between the two original
points  x and  x+d x the point transformation
(1.2) is called a motion or an isometry  in the
Vn.

(i) Affine motion in Vn: When a point
transformation (1.2), transforms any pair of
parallel vectors into a pair of parallel vectors,
then (1.2) is called Affine motion in a Vn.
    For an affine motion, we must have

( *  ) 

     . (1.3)

(ii) Projective Motions in Vn: When
a point transformation (1.2) transforms the
system of geodesics into the same system, then
(1.2) is called a projective Motion in Vn

The necessary and sufficient condition
that (1.2) be a projective motion in a Vn is that
the Lie-difference of    with respect to (1.2)
has the form

 ,         (1.4)
where   is a covariant vector..
    When (1.2) is an infinitesimal transformation

 , then the condition is

     (1.5)

(iii) Conformal Motion in Vn: When
a point transformation (1.2) does not change
the angle between two direction  at a point,
then (1.2) is  called a conformal motion in  Vn.
The necessary and sufficient condition that
(1.2) be conformal motion in a Vn is that the
Lie –difference of  with respect to (1.2)
be proportional to  . [Schouten]

  (1.6)
Where  is a scalar

When (1.2) is an infinitesimal transformation
 , then the condition is

    . (1.7)
Now, we have the following theorem

which is geometrically evident.

Theorem (1.1) : A motion in a  Vn is
an Affine motion.

     Proof : To prove this, we apply the formula

    (1.8)

to the fundamental tensor  , we have

  

                                     (1.9)
from which

. 

               (1.10)

 This equation shows that  

implies   , 

[Note : Under some global condit ions

  implies  .]

Theorem (1.2) : For a motion in a Vn
the Lie-derivative of the curvature tensor and
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its successive covariant derivative  Vanish.

Proof: To prove the above theorem,
we apply the following

  (1.11)

to the Christoffel symbol, we have

.

Where   is the curvature tensor of Vn.
Thus for a motion, we have

  . (1.12)

On the other hand since a motion is an affine
motion, the covariant derivation and the Lie-
derivation are Commutative. Thus from (1.12),
we obtain

 ,  ,… .

This proves the theorem.

2. Theorems on Projectively or Conformally
related spaces:

Consider two Riemannian spaces Vn

and Vn
* which are in geodesic correspondence.

Then denoting the Christoffel symbols of them

by   and   respectively, we have

 .

But since Vn and Vn
* are both Riemannian, the

vector p should be a gradient. Thus putting

       , we have

 
 
.  (2.1)

We now assume that the Vn  admits a

motion with symbol  . Then, we have

  .

Consequently on utilizing  (2.1),  we have

  

    

Thus, denoting by     the fundamental tensor

of    and   the symbol defined by  

in  ,  we have

 

Thus,  we have.
Theorem (2.1): If two Riemannian

spaces Vn and   are in geodesic correspon-
dence and if Vn admits a group of motions,  
also admits a group of motions.

Theorem (2.2): If a Vn admits a Gr

of motions such that the rank of   in a

neighborhood is equal to r < n, then there exist
   , Corresponding to n-r independent



solutions of  , Which are Conformal

to the given Vn and admit the same group as a
group of motions.

Proof: Consider a Vn which admits
an r-parameter group Gr of motions such that

the rank of   is in a certain neighborhood

equal to r < n. Then we have  .

In order that a space   Conformal to Vn admit
the same group  Gr as a group of motions, it is
necessary and sufficient that there exist a
function   2 such that   or

 . But on the other hand

 

and consequently  admits (n – r)

independent solutions.

Note: The a-rank of the  is the

rank of the matrix  where a denotes

the rows and  x denotes the columns.

Theorem (2.3): In order that a Gr in
Xn such that the rank of   in a neighborhood

is equal to r  n, can be regarded as a group
of motions in a Cn, it is necessary and sufficient
that the group be a subgroup of a group of
Conformal transformations.

Proof: The necessity is evident.

Conversely, if the group is a subgroup of a
group of conformal transformations, it is a group
of Conformal motions in a Cn (i.e. Cn stands for
a Conformally Euclidean space). Consequently,
there exists a Vn which is conformal to Cn

and is itself a Cn which admits the group as a
group of motions.

3. Integrability Conditions of Killing’s
equation :

The Integrability Conditions of killing’s equation
  (3.1)

can be deduced from it, considering first the
equation

 .(3.2)

and next the mixed system of partial differential
equations

 

 (3.3)
We know that the equations  (3.1) and (3.2)
or the equation (3.3) have for Integrability
conditions

         …………, (3.4)

4. Theorems on Aff ine and Projective
motions :

We consider an An which admits a Gr
of affine motions with the infinitesimal
operators   such that the
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rank of   in a neighborhood is r  n. Then,

we have

 (4.1)

In order that an , projectively related to  the
An, admits the Gr as a group of affine motions,
it is necessary and sufficient that there exist a
covariant vector field p  such that

 

Or
 .

But this system of partial differential equation
is completely integrable, hence

Theorem (4.1): If an An admits a Gr
of affine motions with the infinitesimal operators

  such that the rank of 

in a neighborhood is r  n , there exists always
in   which is (not trivially) projectively related
to An and which admits the same Gr as a group
of affine motions.

We next consider an An which admits
a Gr of projective motions such that the rank

of   in a neighborhood is r  n, Then, we

have
 .      (4.3)

In order that an , projectively related to the
An, admit the same Gr as a group of affine
motions , it is necessary and sufficient that
there exist a covariant vector field p such that

            (4.4)

Or

     .
(4.5)

On the other hand, substuting (4.3) in the
identity

 , we get

.

Which shows that r covariant vectors p form
a complete system with respect to Gr. Thus
(4.5) is completely integrable and we have

Theorem (4.2) : when an An admits a
Gr of projective motions such that the rank of

 is r  n, there exists an   which is (not
trivially) projectively related to An and which
admits the same Gr as a group of affine motions.

From this, we obtain

Theorem (4.3) : In order that a Gr is

an Xn such that the rank of    is r  n, can

be regarded as a group of affine motions in a
Dn, it is necessary and sufficient that the Gr
be a subgroup of the ordinary projective group.

Proof : The necessity is evident.
Conversely, if the group Gr is a subgroup of
the ordinary projective group, it is a group of
projective motions in a Dn . consequently
according to Theorem(4.2), there exist an An

which is projectively related to  Dn, and is itself
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a  Dn and admits Gr as a group of affine
motions. Thus, theorem (4.3) is proved.

5. Integrability condition of .

We consider the Integrability condition

of  , which can be written as

  (5.1)

Now from the following equations.

 .

and
,

we have

 ,     ,  (5.2)

respectively. Then applying the formula

    .

to   and ,  we obtain

 ,  . (5.3)

respectively.
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