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Abstract

This paper investigates upon the characteristics on the
existence of supremum and infimum of fuzzy random variables. This
paper provides an improved version of the supremum and infimum of
fuzzy random variables which plays a crucial role in the theoretical
framework of the same. Finally the existence of supremum and infimum
of the level continuous fuzzy valued measurable functions on a closed
interval is examined and a necessary and sufficient condition with which
its supremum and infimum can be attained, is provided.
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1. Introduction

A fuzzy random variable is considered
as the imprecise observation of the outcomes
in a random experiment. The realization of the
coexistence of randomness and fuzziness has
ultimately resulted in the formulation of fuzzy
random variables. The concept of fuzzy random
variable is capable of handling situations where
the outcomes of a random experiment are modeled
by fuzzy sets. A fuzzy random variable is a
mapping which associates a fuzzy set to each
element of the universe which is amenable to

probability space structure. Fuzzy random variable
assigns a fuzzy subset of the final space to
each possible outcome of a random experiment.
This association exposes the available information
about the relation between both the universes.
Thus fuzzy random variable is the generalization
of the notion of a random variable. But this
kind of generalization process has not resulted
in a unique fashion. Each formulation of fuzzy
random variable has its distinction with the
other in the formation of the final space and
the manner in which the measurability condition
is utilized to this context.
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Kwakernaak6 and Puri and Ralescu7

have focused on the properties of the multi-
valued mappings associated to the -cuts.
Kwakernaak6 assumes that the outcomes of
the fuzzy random variable are fuzzy real subsets
and the boundary points of their -cuts are
classical random variables. Puri and Ralescu7

impose the condition that the -cuts to be
measurable. Klement et al.,4 and Diamond
and Kloeden2 have formulated fuzzy random
variables as classical measurable mappings.
Kratschmer5 has revised all these previous
formulations and examined some relationships
between different measurability conditions.

In this paper Kwakernaak’s6 fuzzy
random variables are considered for our inves-
tigation. According to Kwakernaak6 fuzzy
random variable is a mapping X :   S where
 is the sample space and S is the space of all
piecewise continuous functions R  [0,1]. The
mapping X described above characterizes a
special type of fuzzy random variable. The
random variable U of which this fuzzy random
variable is a perception is called an original of
the fuzzy random variable. It is pertinent to
note that in the case of Kwakernaak’s6 fuzzy
random variable, there may exist many originals.
For any random variable the acceptability that
it is an original is given by the truth value assigned
to it, interms of supremum and infinimum of
the collection of random variables.

In this paper an investigation is carried
upon the characteristic on the existence of
supremum and infimum of fuzzy random
variables. Finally the existence of supremum
and infimum of the level continuous fuzzy
valued measurable functions on a closed interval

is examined and necessary and sufficient
condition with which its supremum and infimum
can be attained is provided.

The paper is organized as follows.
Section 2 furnishes the necessary technical
background. Section 3 deals with the existence
of supremum and infimum of fuzzy random
variables. In section 4 the notion of level
continuity of fuzzy valued measurable functions
are introduced. The properties level continuous
fuzzy valued measurable functions are derived.

2. Preliminaries :

Let R be the real number field, N be
the set of all positive integers and F(R) denote
the set of all fuzzy subsets on R which constitutes
the fuzzy number space.

For u  F(R), the  - level set of u is
defined as

[u]  =
 
 







0if;0)x(u;Rxcl
10;)x(u;Rx

Definition3 : 2.1
A fuzzy set u on R is called a fuzzy

number if it has the following properties

1) u is normal, i.e there exists an x0  R such
that u(x0) = 1

2) u is convex, i.e. u(x + (1)y)  min {u(x),
u(y)} for x,y R and   [0,1]

3) u is upper semi continuous
4) [u]0=cl {x  R | u(x) > 0} is a compact set

A real number r can be regarded as

the fuzzy number r~ defined by
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r~ (t) = 







rt;0
rt;1

It is to be noted that if u  F(R), then
u is a fuzzy number if and only if [u] is a non-
empty bounded and closed interval for each
 [0,1]. We denote by

[u] =  UL u,u  ,   [0,1].
A partial ordering in F(R) is defined

as u  v if and only if Lu   Lv , Uu   Uv  for
all   (0,1].

   Where [u]=  UL u,u   and [v]=  UL v,v 

A subset A of F(R) is said to be bounded
above if there exists a fuzzy number M called
an upperbound of A such that u  M for all
uA. A fuzzy number u is called the supremum
of A if u is an upper bound of A and u  v for
each upperbound v of A. A lower bound and
the infimum of A are defined in a similar
fashion. The supremum and the infimum of A
are denoted by Sup A and inf A respectively.

Theorem3 : 2.1

Let u  F(R) and [u]=  UL u,u  ,
then the following conditions are satisfied.

1)  LU is a bounded left continuous non
decreasing function on (0,1].

2)  UU is a bounded left continuous non-
increasing function on (0,1]

3)  LU  and  UU  are right continuous for each
 = 0

4)  L
1u   U

1U

Conversely if the pair of functions
a() and b() satisfies the conditions (1)(4)
then there exists a unique u  F(R) such that
[u]=[a(), b()] for each   [0,1]

   Theorem3 : 2.2  For u, v  F(R) define

 D(u, v) =  
]1,0[

sup


 max   UULL vu,vu  

then D is a metric on F(R) and (F(R),
D) is a complete metric space.

3. Existence Theorem of Supremum and
Infimum of Fuzzy Random Variables :

Let (, A, P) be a probability space.
R() denotes the set of all random variables
on (, A, P)

Let RI() = { x~ ; x~  = [xL, xU], xL, xU

 R (), xL  xU  every where on }

The elements in RI() are called
closed random interval numbers on (, A, P).
If x  R() then x = [x, x]  RI(). Hence
R  R()  RI() where R = (, ). The
following theorem deals with the existence of
supremum and infimum of fuzzy random
variables.

Theorem : 3.1 :
Let (, A, P) be  a probability space.

Let A be a non empty subset of RI(). If A
has an upper bound, then its supremum u 
R() must exist and has the following
expressions.



  u = sup A = 
 


]1,0(

U

AX

L

AX
Xsup,Xsup







 





 (3.1)
 

L


=  L

AX
Xsup 


, 

U


= U

r
AXr

Xsupinf


for each

  (0,1]  (3.2)
 

L

o
=  

0
inf


 L

AX
Xsup 


,  

U

0
=   U

0
AX

Xsup


(3.3)

Dually if A has a lower bound then its
infimum V  R() must exist and has the
following expressions :

V = inf A =   U

AX

L

AX]1,0(
Xinf,Xinf 



    (3.4)

 LV =  
r

sup  
AX

inf


 L
rX , UV = 

AX
inf


 UX for each

  (0,1]   (3.5)

 L
0V =  AX

inf
   L

0X ,  U
0V =  

0
sup



 
AX

inf


 UX  (3.6)

Proof :
Suppose that MRI() be an upper-

bound of A.
Then X M for all X  A. So we have

 LX 
 LM ,  UX 

 UM  for each  [0,1]

It is easy to see that for each fixed 

 [0,1], the sets of real numbers { LX ; X 

A} and { UX ; X  A} are bounded above.
Hence we can define the interval

H() =
 













U

AX

L

AX
Xsup,Xsup

Obviously 0 <  <   1 implies H()  H().

By the representation theorem of fuzzy sets,
there exists a fuzzy set U on R such that

U =  
]1,0(

)(H


  and

    [u] =   
r

)r(H

         =
 


  





r

U
r

AX

L
r

AX
Xsup,Xsup

         =
 









U
r

AXr

L
r

AXr
Xsupinf,Xsupsup (3.7)

   for each   (0, 1].

Moreover [u]0 is a closed interval. In
fact for each   (0,1] and r(0, ) we have

    [u] 
 









U
r

AX

L
r

AX
Xsup,Xsup

           
 













U

AX0

L

AX0
Xsupsup,Xsupinf

This implies that

    [u]0 = cl 
 












]1,0(
]u[

          
 













U

AX0

L

AX0
Xsupsup,Xsupinf

     
]1,0(

]U[


 is nothing but an interval.

Hence [u]0 is a bounded closed interval.

 u  RI().
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From expression (3.7) and by theorem
2.1 that

     uL
 =  

r
sup   

AX
sup


 L
rX =  

AX
sup


 L
rX

     
U


= 

r
inf  

AX
sup


 U
rX  for   (0,1]

     
L

0
=   0

lim   uL
  =  

0
inf
 AX

sup


 LX

     
U

0
=   0

lim  uU
 =  

0
sup


  

r
inf   

AX
sup


 UX

(3.2) and the first formula of (3.3) are established.

To prove  uU
0

= 
AX

sup


 U
0X , it is enough if we

prove that

     
0

sup


  
r

inf  
AX

sup


  U
rX =  

AX
sup


 U
0X

obviously  
AX

sup


 U
0X   

0
sup


  

r
inf  

AX
sup


 UX

Since  UX  is non-increasing and right-
continuous at  = 0

We have  
AX

sup


  U
0X = 

AX
sup


 
0

sup


 UX= 
0

sup


 
AX

sup


 UX


0

sup


 
r

inf
AX

sup


 U
rX

This establishes the second formula of (3.3)
Lastly we prove that u is the supremum of A

i.e u = sup A

From (3.2) it can be deduced that

     LX   LU ,  UX 
 UU  for each   (0,1]

and X  A

In fact  LX    
AX

sup


  LX =  Lu

Moreover for any r  (0, ) we have

      UX    U
rX  

AX
sup


 UX  and so

             UX 
 

r
inf  

AX
sup


 LX =  UU

This shows that u is an upper bound
of A. On the other hand suppose that W 
RI() is also an upperbound of A.

Then we have
AX

sup


 LX   LW
 and

AX
sup


 UX  UW  for all   (0,1] and so

 
Lu   LW  

 
U




r
inf

AX
sup


U
rX 

r
inf U

rW = UW ;

  (0,1]
Hence U  W. This shows that u is the least
upper bound of A.

 u = sup A
Suppose that L  RI() be a lower

bound of A. Then X  L for all X  A. So we
have

LX   LL , UX   UL   for each   [0,1].

It is easy to see that for each fixed 

[0,1] the sets of real numbers{ AX,XL  }

and { AX,XU  } are bounded below. Hence
we can define the interval

J() =   U

AX

L

AX
Xinf,Xinf 

Obviously 0 <  <   1 implies J()  J()
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By the representation theorem on
fuzzy sets, there exists a fuzzy set V on R such
that

V =  
]1,0(

)(J


  and

[V] =  
r

)r(J

        =    
 r

U
rAX

L
rAX

Xinf,Xinf

        =    U
rAXr

L
rAXr

Xinfinf,Xinfinf


for each   (0,1]

Moreover [v]0 is a closed interval. Infact
for each   (0,1] and r(0, ) we have

    [v]    U
rAX

L
rAX

Xinf,Xinf


           
 










U
rAX0

L

AX0
Xinfsup,Xinfinf (3.8)

This shows that

    [v]0 = cl 
 












]1,0(
]v[

     
 










U
rAX0

L

AX0
Xinfsup,Xinfinf

 
]1,0(

]v[


 is nothing but an interval

Hence [v]0 is a bounded closed interval

 V  RI()

From expression (3.8) and by theorem 2.1 that

 LV = 
r

sup  
AX

inf


 L
rX

    UV =
r

inf  
AX

inf


 U
rX = 

AX
inf


 UX  for each

  (0,1]

    L
0V = 

 0
lim  UU = 

0
sup


 

r
inf

AX
inf


 L
rX

    U
0V =

 0
lim  LU = 

0
sup


 

AX
inf


 U
rX  

(3.5) and the second formula of (3.6) are estab-
lished.

To prove L
0V  = 

AX
inf


L
0X  it is enough if we

prove that

     
0

sup


 
r

inf
AX

inf


 L
rX  = 

AX
inf


 L
0X

obviously 
AX

inf


L
0X = 

0
sup


 

r
inf

AX
inf


 U
rX  

Since LX is non-decreasing and left continuous
at  = 0

 We have 
AX

inf


 L
0X   = 

AX
inf
 0

sup


 LX

       = 
0

sup


 
AX

inf


 LX

       
0

sup


 
r

inf
AX

inf


 U
rX  

This establishes the second formula of (3.5)

Lastly we prove that V is the infimum
of A

i.e V = inf A

From (3.5) it can be deduced that

   LX   LV
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   UX   UV   for each   (0,1] and X  AA

Infact LX   
AX

inf


LX = LV

Moreover for any r  (0, ) we have

LX   L
rX  

AX
inf


U
rX   and so

LX   
r

inf
AX

inf


L
rX  = LV

This shows that V is an upperbound of A. On
the otherhand suppose that V1  RI() is also
a lower bound of A.

   Then we have 
AX

inf


LX    L
1V 

 and

        
AX

inf


UX    U
1V   for all   (0,1] and

so
LV    L

1V 

UV  = 
r

sup  
AX

inf


U
rX

           
r

sup   U
1V   =  U

1V   ;   (0,1]

Hence V  V1 this shows that V is the greatest
lower bound of A.

 V = sup A.

4. Some Properties of Level Continuous
Fuzzy Valued Measurable Functions:

In this section the concept of fuzzy
valued measurable function and the level
continuity of fuzzy valued measurable function
are introduced. Some interesting properties of

level continuous fuzzy valued measurable
functions are established. Let X be a non-
empty set.

Definition : 4.1
Let F(R) be the set of all fuzzy number.

(F(R))cl denotes the set of all closed fuzzy
numbers, (F(R))b denotes the set of all bounded
fuzzy numbers and (F(R))s denotes the set of
all standard fuzzy numbers. We say that

(i)  )x(f~  is a fuzzy valued function if  f~ : X

 F(R)

(ii)  )x(f~ is a closed fuzzy valued function if

 f~ : X  (F(R))cl

(iii)  )x(f~ is a bounded fuzzy valued function

if  f~  : X  (F(R))b

(iv) )x(f~ is a standard fuzzy valued function if

 f~ : X  (F(R))s

We denote  )x(f~ L
  =  L)x(f~     and

     
)x(f~ U

  =  U)x(f~ 

Definition 4.2 :

By a fuzzy valued measure  ~  on a
measure space (X, M) we mean a non-negative
fuzzy valued set function defined for all sets
of M and satisfying the following two
conditions.

(i)  ~ () =  0~
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(ii) ~  





 




1n
nE  = )E(~

n
1n





 exists for any

sequence Ei of disjoint measurable sets.

         ~ is called closed (bounded or standard)

fuzzy valued measure of  ~  is a  non-negative
closed (bounded or standard) fuzzy valued set
function.

Definition 4.3 :
Let (X, M) be a measurable space and

(R, B) be a measurable space.

(i) f : X P(R) (power set of R) is a set valued
function then f is called measurable if and
only if {(x, y); y  f(x)}  is  a  measurable
subset of MB [1].

(ii)  f~ is a  fuzzy  valued  function then  
f

~
is a

set valued function for each . f~ is called

measurable if and only if  
f

~
 is measurable

for each .8

(iii) Let  f~ be a closed fuzzy valued function.
 f~ is called strongly measurable if and only

if  f~ is measurable and one of  Lf~ and  Uf~
is measurable for each  8.

A fuzzy valued function  f~ : X  F(R)
is said to be continuous at t0X if for each  >

0 there is a  > 0 such that D ( f~(t),  f~(t0)) < 

whenever tX with | t  t0| < . If  f~ (t) is

continuous at each tX then we say that  f~ (t)
is continuous on X.

Definition 4.4 :

A fuzzy valued function  f~ : X  F(R)
is said to be level-continuous at t0 X if

 
0tt

lim


 f~ (t) =  f~ (t0) i.e.,

 
0tt

lim


  L)t(f~ 
=   L0 )t(f~ 

 
0tt

lim


  U)t(f~ 
=  U0 )t(f~ 

 for each   (0,1]

If  f~ is level continuous at each t  X

then we say that  f~ is level continuous on X.

Theorem 4.1:

Let  f~ : X  F(R) be a fuzzy valued
measurable function, and level continuous at
t0  X and   (0,1] be given.

Let  f~ : X  F(R) be a fuzzy valued
measurable function, then for any {tn}  X
with tn  t0 and any n  (0, ) with n  
we have lim n   we have lim n  
  Un n

)t(f~ 
 =   U0 )t(f~ 

      Proof : By stipulation  f~ is level continuous
at t0 and {tn} X with tnt0. we have lim

n    )t(f~ n
 =  )t(f~ 0

  F(R).

By theorem 4.1 we knowthat
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  Un )t(f~ 
 is eventually equi-left continuous

at   (0,1] and so for any > 0 there exists a
natural number N1 and >0 ( < ) such that

 
    Un

U

n )t(f~)t(f~    < 
 

2
  for all  

(  , ]
and n  N1   (4.1)

since n  (0, ) with n   and

  Un )t(f~ 
   U0 )t(f~ 

 there exists a natural

number N2 such that

n  (  , ) and 
    U0

U

n )t(f~)t(f~  

< 
 

2
  for all n  N2

Let N = max {N1, N2}. By (4.1) and (4.2) we
have
    U0

U

n )t(f~)t(f~
n  


    Un

U

n )t(f~)t(f~
n     +

      
    U0

U

n )t(f~)t(f~
n    < 

for all n  N

 lim n     Un n
)t(f~ 

=  U0 )t(f~ 

Theorem 4.2:

Let  f~ : X  F(R) be level-continuous
fuzzy valued measurable function on X. Then
we have

(1) sup t  X   L)t(f~ 
 = sup  <    L)t(f~ 

for each   (0,1]

(2) sup t  X   U)t(f~ 
  =  


inf  

Xt
sup


  U)t(f~ 

for each   (0,1]

(3) sup t  X   L0)t(f~ =inf r > 0  
Xt

sup


  L

r)t(f~

(4) sup tX    U
0)t(f~ =sup r > 0 

Xt
sup


   U
r)t(f~

Proof :

(1) Since   L)t(f~ 
 is non-decreasing and left

continuous for 

we have  
Xt

sup


  L)t(f~ 
= 

Xt
sup


 


sup   L)t(f~ 

          = 


sup  
Xt

sup


   L)t(f~ 

(2) Let  
Xt

sup


   U)t(f~ 
 = p


inf

Xt
sup


   U)t(f~   = q

Since    U)t(f~   is non-increasing for 

We have   U)t(f~ 
   U)t(f~ 

 
Xt

sup


   U)t(f~ 

for all  <  and t[a,b]. This shows that p
 q.

Now suppose that p < q. Taking a fixed
c  (p,q) and n  (0,) with n   then we
have
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C < q   
Xt

sup


   U

n
)t(f~ 

 and so there

exists  tnX such that    U
n )t(f~  > C.  without

loss  of  generality  we can assume tnt0 X.
By theorem 4.1.

  We infer that

     p<C  
Xt

sup


   U
0 )t(f~ 

 
Xt

sup


   U)t(f~ 
=p

     which is a contradiction.

 p = q.

(3)  
Xt

sup


   U
0)t(f~ =   0

lim  
Xt

sup


   L)t(f~ 

   = 
r

inf
Xt

sup


   L
r)t(f~

   = 
0r

inf
 Xt

sup


   L
r)t(f~

(4)=  
Xt

sup


   U
0)t(f~ =   0

lim  
Xt

sup


   U)t(f~ 

                     =
0

sup
 r

inf
Xt

sup


   U)t(f~ 

  = 
0r

sup
 Xt

sup


   U
r)t(f~

Theorem 4.3 :

Let  f~ : A   F(R) be a level continuous
fuzzy valued measurable function.

Then u =  
At

sup


 )t(f~ must exist in F(R) and

for each   [0,1]

 Lu =
At

sup


   L)t(f~   

UU  = 
At

sup


   U)t(f~   

Proof :

Since  f
~

is level continuous on A, it is
easy to see that for each fixed  [0,1],
  L)t(f~ 

 and   U)t(f~ 
 are continuous in A.A.

Thus we can define two functions a(), b ()
on [0,1] by

a() = 
At

sup


 L)t(f~   

b() = 
At

sup


 U)t(f~   

obviously a() is non-decreasing, b() is non-
increasing and (1)  (1). It follows from
(1) and (2) of theorem 4.2 that

a() = 


sup
At

sup


 L)t(f~ 

        =  


sup  a() =  


lim  a()

and b()= 


inf  
At

sup


  U)t(f~ 

        = 


inf b()= 


inf  b() for each (0,1]

This implies that a() and b() are
left continuous at each   (0,1] similarly by
using (3) and (4) of theorem 4.2. We can prove
that a() and b() are right continuous at =0.

This shows that a() and b() satisfy
the condition (1)  (4) of theorem 2.1. Hence
there exists a W  F(R) such that
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 LW  = a()

 UW = b() for each   [0,1]

It is easy to see that  f~ (t)  W for all
t  A. i.e. W is an upperbound for the set of
all fuzzy valued measurable functions. Thus
by theorem 3.1 we infer that the supremum
exists in F(R) and write

u =  
At

sup


 f~ (t)

By (3.2) and (3.3) and theorem 4.2 it
is easy to prove that (1) holds. This completes
the proof.

Theorem 4.4 :

       Let  f
~

: A   F(R) be level continuous fuzzy
valued measurable function. Then can attain

its supremum in A if and only if the  
At

sup


  f~(t)

has the level –approximation property, that is

there exists {tn}A such that lim n  f~(tn)=

 
At

sup


  f~(t).

Proof :

       We assume that  f~attains its supremum
in A.

       Suppose that there exists t0  A such that

)t(f~ 0  = 
At

sup


)t(f~  

Taking tn = t0, n = 1, 2, …… we have

n
lim )t(f~ n  = 

At
sup


)t(f~  

conversely we assume that

n
lim )t(f~ n  = 

At
sup


)t(f~  . and

prove that  f
~

 attains its supremum in A.

Suppose that  
At

sup


 )t(f~  has the level

approximation property.

i.e. there exists {tn}  A such that

n
lim )t(f~ n  = 

]b,a[t
sup


)t(f~  

Without loss of generality we can
assume tn  t0  A

Since  f~ is level continuous at t0 we have

    L
n )t(f~      L

0 )t(f~    and

    U
n )t(f~      U

0 )t(f~ 
for each [0,1]

Thus we have

 L0

L

At
)t(f~)t(f~sup 








  Ln

L

At
)t(f~)t(f~sup 








   L0

L

n )t(f~)t(f~(    

 0 as n  .
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and so
L

At
)t(f~sup

 



  =   L

0 )t(f~ 
. Similarly

we have

    
U

At
)t(f~sup

 



  =   U

0 )t(f~   for each

  [0,1]

Hence )t(f~sup
At

 = )t(f~ 0 . 
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