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Abstract

In this  paper we introduce the concepts of Pk and Pk’ seminear-
rings where ‘k’ is a positive integer and study some of their properties.
We also discuss certain properties of P1 and P1' seminear-rings and also
obtain their characterizations.
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1.Introduction

This paper is a continuation of the
authors’ earlier paper6. In the previous paper6

properties of P(r,m) seminear-rings have been
discussed. The purpose of the present paper
is to introduce the concept of Pk and Pk’
seminear-rings. By a seminear-ring ‘R’ we
mean only a right seminear-ring (R, +, .)
with an absorbing zero as defined6. We write
ab to denote the product a.b for any two
elements a, b in R. For terms and notations used

but left undefined we refer to1-3.

      We recall6 that a function  f: R  R is a
mate function if x = xf(x)x for all x in R.

1.1. Notations :

(i) E={eR/e2=e}-set of all idempotents of R.
(ii) C(R) = {rR / rx = xr for all xR}- centre
     of R.
(iii) L={xR / xk = 0 for some positive integer
    ‘k’}- set of all nilpotent elements of R.
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1.2. Preliminary results:

We freely make use of the following
results from6 and designate them as K(1),
K(2), K(3) and K(4).
K(1): A seminear-ring R has no non-zero nilpotent

elements  if  and only if x2 = 0  x = 0
for all x in R. (This result in prob5 14, P.9
in respect of rings is valid for R as well).

K(2): If R admits  a mate function f, then xf(x),
f(x)xE and Rx = Rf(x)x and xR= xf(x)R
for all x in R (Proposition6 3.2).

K(3): A mate function ‘f’ of  R is  called a P3
mate function if for every x in R, xf(x) =
f(x)x (Definition6 4.2)

K(4): If R is a P(1,2) seminear-ring  i.e. xR =
Rx2 for all xR then E C(R) (Theorem6

4.18).

2. Pk and Pk’ seminear-ring :

In this section we define Pk and Pk’
seminear-rings and give certain examples of
such seminear-rings.

Definition 2.1.  A seminear-ring R is
called a Pk seminear-ring (Pk’ seminear-ring)
if there exists a positive integer ‘k’ such that
xkR = xRx (Rxk = xRx) for all x in R.

Examples 2.2.
(i) Let R = {0, a, b, c, d}. We define the
semigroup operations ‘’+’’ and ‘’.’’ in R as follows.

+ 0 a b c d
0 0 a b c d
a a a a a a
b b a b b b
c c a b c c
d d a b c d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b c c
d 0 a b c d

Then (R, +, .)  is a Pk  as well as a Pk’
seminear-ring for all positive integer k.

(ii) Let R = {0, a, b, c, d}. We define the
semigroup operations ‘’+’’ and ‘’.’’ in R as follows.

+ 0 a b c d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b b b
d 0 a d d d

Then (R, +, .) is a Pk  seminear-ring for all
positive integers k but not a Pk’ seminear-ring
for any positive integer k.

(iii) The direct product4,5 of any two seminear-
fields is a Pk as well as a Pk’ seminear-ring.

Theorem 2.3.  Any homomorphic
image of a Pk(Pk’) seminear-ring is a Pk(Pk’)
seminear-ring.

Proof. The proof is straight forward.

Similar to the definitions of left normal



Some Special Seminear-ring Structures II. 93

and right normal seminear-ring (Definition6 2.5)
we define the following:

Definition 2.4. Let ‘r’ be a positive
integer. We say that R is a left-r-normal (right-
r-normal) seminear-ring if aRa r(a  a r R )
for all ‘a’ in R.

Example 2.5.

(a) The seminear-ring of example 2.2(i) is a
left-r-normal as well as a right-r-normal
seminear-ring.
(b) Trivially any Boolean seminear-ring is a
left-r-normal as well as a right-r-normal
seminear-ring.

Proposition 2.6. Every left-r-normal
(right-r-normal) seminear-ring is a left (right)
normal seminear-ring.

Proof.  Let R be a left-r-normal
seminear-ring with r  2. Clearly then for all
a R, a Rar = (Rar-1)a Ra. i.e. a Ra.
Therefore R is a left normal seminear-ring.

         Proof is similar when R is a right-r-
normal seminear-ring.

We shall now discuss some elementary
properties of Pk(Pk’) seminear-ring.

Proposition 2.7. A left identity (right
identity) of a Pk(Pk’) seminear-ring is also a
right identity(left identity).

Proof. Let R be a Pk seminear-ring.
Let ‘e’  be a left identity of R. Then x = ex for
all xR. Now ekR = eRe  eR = eRe. Then
there exists yR such that, x = ex = eye =

(ey)e = ye. Hence xe = (ye)e = ye2 = ye = x.
i.e.  x = ex = xe. Therefore ‘e’ is a right identity
as well.

Let R be a Pk’ seminear-ring and ‘e’
be a right identity of R. Then x = xe for all
xR. Now Rek = eRe  Re = eRe. Then there
exists y’R such that, x = xe = ey’e = e(y’e)
= ey’. Hence ex = e(ey’) = e2y’ = ey’ = x.  i.e.
x = xe = ex. It follows that ‘e’ is also a left
identity.

Remark 2.8. A right identity8,9 of a Pk
seminear-ring need not be a left identity. The
following example substantiates this. We
consider the seminear-ring R = {0, a, b, c, d}
where the semigroup operations ‘’+’’ and ‘’.’’
in R  are defined as follows.

+ 0 a b c d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 b b b b
c 0 c c c c
d 0 d d d d

Here a, b, c, d are right identities but none is a
left identity.

Theorem 2.9. A Pk (Pk’) seminear-
ring R has a mate function if and only if R is a
right-k-normal (left-k-normal) seminear-
ring.



Proof. Let R be a Pk seminear-ring.
Then xkR = xRx for all x in R. If R has a mate
function ‘f’ then x = xf(x)x  xRx (= xkR) and
this implies x  xkR.  i.e.  R is a right-k-normal
seminear-ring.

Conversely let R be a right-k-normal
Pk seminear-ring. Therefore x  xkR ( = xRx)
for all x in R. Then there exists some y in R
such that x = xyx. Clearly then x = xf(x)x
where we set f(x)=y. It follows that f is a mate
function for R.

The proof is similar when R is a Pk’
seminear-ring.

Theorem 2.10. Let R be a Pk or a Pk’
seminear-ring. If R admits mate functions then
R has no non-zero nilpotent elements i.e.
L= {0}.

Proof. Let R admit a mate function
‘f ‘. We shall show that x2 = 0  x = 0 for x in
R ... .. . .(1)

Case (i): Let R be a P1 seminear-ring,
i.e. xR= xRx for all x in R. We have x = xf(x)x
xRx. But xRx= (xR)x = (xRx)x = xRx2= (xR)x2.
Then there exists yR such that x = xyx2.
Consequently (1) holds.

Case (ii):  Let R be a Pk seminear-
ring with k 1. Now xkR  = xRx for all x in R.
Since x = xf(x)x xRx = xkR, x = xky for some
‘y’ in R. If k = 2, then x = x2y . If k  2, we
write x = x2 (xk-2y) and therefore (1) is true.

Case (iii): Let R be a P1' seminear-

ring, i.e.  Rx = xRx for all x in R. Therefore x
= xf(x)x  xRx = x(Rx) = x(xRx) = x2Rx 
x = x2(Rx). Then there exists yR such that
x = x2yx. Thus (1) holds good.

Case (iv): Let R be a Pk’  seminear-
ring with k 1. Now Rxk  = xRx for all x in R.
Since x = xf(x)x  xRx = Rxk, we get  x  = y2
xk for some y2  in R. If k = 2, then x = y’x2. If
k  2, we write  x = (y’xk-2) x2  and again (1)
holds.

Now K(1) gurantees that, in all the
four cases, L = {0}.

Theorem 2.11. Let R be a P(1,2)
seminear-ring with a mate function f . Then R
is a
(a) Pk  seminear-ring for all positive integer k.

(b) Pk’ seminear-ring for all positive integer k.

Proof. Since R is a P(1,2) seminear-
ring. K(4) demands that every idempotent is
central. i.e E  C(R).

(a) Case (i): Let k = 1. For all x in R,
xR = x(f(x)xR) = x(Rf(x)x) (since E  C(R))
= xRx  (By K(2))  i.e.  xR = xRx. Hence R is
a P1 seminear-ring.

Case (ii): For k 1 and for any xR,
xkR = x(xk-1 R)  xR = xRx (using the result
for k=1). Therefore xkR   xRx. Also xRx =
xRxf(x)x = x(Rxf(x))x = x(xf(x)R)x (since E
 C(R)) = x(xR)x (By K(2)) = x2R = x(xRx) =
x(x2Rx) = x3Rx. Repeating this process, we
obtain xRx = xkRx   xkR for all positive integers
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k .Therefore xRx  xkR. Thus xRx = xkR  for
all x in R. Hence R is Pk seminear-ring for any
positive integer k.

(b) Case(i): Let k = 1. For all x in R,
Rx = Rxf(x)x = (Rxf(x))x = (xf(x)R)x (since E
 C(R)) = xRx (By K(2)). i.e. Rx= xRx. Hence
R is a P1' seminear-ring.

Case (ii): Let k 1. Since E  C(R)
we have for all y,x in R, yxk = (yx)xk-1 =
(yxf(x)x)xk-1 = (xf(x)yx)xk-1 = (xf(x)yxk-1)x
xRx.  Therefore Rxk  xRx.  Also xyx =
(xf(x)x)yx = xyf(x)x2 = (xf(x)x)yf(x)x2 =
xy(f(x))2x3. Repeating this process, we obtain
xyx = xy(f(x))k-1xk  Rxk for all positive integers
k. Therefore xRx  Rxk. Thus xRx  = Rxk  for
all x in R. Hence R is Pk’ seminear-ring for any
positive integer k.

Remark 2.12. We observe that a Pk

seminear-ring need not be a P(1,2) seminear-ring.
For example, we consider the seminear-ring
R={0, a, b, c, d} where the semigroup operations
‘’+’’ and ‘’.’’ in R  are defined as follows.

+ 0 a b c d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d

. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b c d
d 0 a d d d

Here (R, +, .)  is a Pk  seminear-ring for all
positive integers k. Even though the identity
function serves as a mate function for R, it  is
not a P(1, 2) seminear-ring.

Proposition 2.13. Let R admit a P3
mate function ‘f ‘. Then every right ideal (left
ideal) of a Pk (Pk’) seminear-ring R is a
completely semi prime ideal.

Proof.  Case (i): If k = 1. Let I be a
right ideal of R and let a2I. Then a = af(a)a
= a(f(a)a) = a(af(a)) (since f  is a P3 mate
function) = a2f(a)  IR   I.  i.e.  a  I and
the result follows.

Case (ii): Let k >1. For aR, a =
af(a)a  aRa = (akR) and therefore there
exists yR such that a = aky. When k = 2, a2

I  a = a2y  IR  I.  i.e.  a2I aI.
When k>2, a2I  a = a2(ak-2y)  IR  I.
i.e. aI and the desired result follows.

The proof is similar when R is a Pk’
seminear-ring.

Theorem 2.14. Any ideal of an left-
k-normal Pk’ (right-k-normal Pk) seminear-ring
R is also an left-k-normal Pk’ (right-k-normal Pk)
seminear-ring in its own right.

Proof. Since R is a left-k-normal Pk’
seminear-ring Proposition 2.9 guarantees the
existence of a mate function f for R. Let M be
an ideal of R. Therefore f(x)xf(x) RMR 
M for all x in M. Thus we can define a map g:
MM such that g(x) = f(x)xf(x) for all xM.
Obviously then xg(x)x = x and therefore g is a
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mate function for M.

Now let x, aM. Since Rxk = xRx
there exists bR such that axk = xbx =
x(bxg(x))x  x(RM)x  xMx. Therefore Mxk

 xMx ..........(1) .

Also since xax xRx = Rxk, there
exists yR such that xax = yxk. Again xax =
xg(x)(xax) = xg(x)yxk = y2 xk where y2  =
xg(x)yMR  M.  Therefore xMx 
Mxk.............(2).

From (1) and (2) we get Mxk  = xMx
for all xM. i.e. M is a Pk’ seminear-ring. Since
M has a mate function 'g'  then M is a left-k-
normal seminear-ring as well (from Proposition
2.9).

The proof is similar when R is a right-
k-normal Pk seminear-ring.

Definition7 2.15. A seminear-ring R
is said to fulfill the right(left) Ore condition with
respect to a given subsemigroup ‘A’ of (R, .) if
for every aA, rR there exist a1A, r1R
such that ra1 = ar1(a1r = r1a).

Proposition 2.16. Let R be a Pk (Pk’)
seminear-ring. Then R satisfies left (right) Ore
condition.

Proof. Let A be any subsemigroup of
R and let aA, rR. Since akR = aRa there
exists yR such that akr = aya.  i.e. a1r = ar1

where a1 = akA and r1 = ya  R and R fulfills
the left Ore condition.

In a similar fashion we can prove that

the Pk’ seminear-ring fulfills the right Ore
condition.

3. Properties of P1 and P1' seminear-rings:

   We furnish below simple characterizations
of P1 and P1' seminear-ring.

Theorem 3.1. Let R be a seminear-
ring with a mate function f. Then we have

(i) every left ideal of R is a right ideal of R if
and only if R is a P1 seminear-ring.

(ii) every right ideal of R is a left ideal of R if
and only if R is a P1' seminear-ring.

Proof. Since R is a seminear-ring with
a mate function f.

(i). Assume that every left ideal of R is a right
ideal of R. By the assumption, Rx being a left
ideal for every xR, is also a right ideal of R.
Therefore (Rx)R  Rx. Since f is a mate
function x = xf(x)x. From this we get  xR =
xf(x)xR  xRxR  xRx........(1).

Clearly xRx  xR..........(2). From (1) and (2)
we get xR = xRx for all xR. i.e. R is a P1

seminear-ring.

Conversely, let A be any left ideal of
R, then RA  A. Let aA and yR, we have
ay aR = aRa  ay = ay’a (for some y’ in
R)  = (ay’)a Ra. This forces ayRA  A 
AR  A and hence A is an ideal.

(ii). Assume that every right ideal of R is a
left ideal of R. By the assumption xR,  being a
right ideal for every xR, is also a leftt ideal
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of R. Therefore R(xR)  xR. Since f  is a mate
function x = xf(x)x. From this we get Rx =
Rxf(x)x  RxRx  xRx........(1).

Clearly xRx  Rx..........(2). From (1)
and (2) we get xR = xRx for all xR. i.e. R is
a P1' seminear-ring.

Conversely, let A be a right ideal of R,
then ARA. Let aA and yR, we have ya
Ra = aRa  ya = ay’a, for some y’ in R =
a(y’a)  aR. This forces yaAR  A  RA
A. Hence A is an ideal.

Definition7 3.2. A seminear-ring R is
said to have  Insertion of Factors Property-
IFP for short - if for x, y  R,  xy = 0  xry =
0 for all r in R. If in addition, xy = 0  yx = 0
for x, y in R we say R has (, IFP).

Theorem 3.3. Let R be a left normal
P1' seminear-ring. Then

(i) ( NM  ) = MN where M and N are ideals
of R

(ii) Any prime ideal is a completely prime ideal.

(iii) R has (, IFP)

Proof. Since R is left normal P1'
seminear-ring. Proposition 2.9 guarantees that
R has a mate function f.

(i). If M, N are ideals of R then ( 2)NM   =
( NM )( NM )  NM  . Also for all ‘a’  in

NM  , a= a(f(a)a) ( NM  )( NM  ). This
forces( NM  )=( 2)NM  . Further, ( NM  )

=( NM  )( NM  )  MN.

To prove the reverse inclusion, let us
take yMN. Clearly then yMN  N. Also y
= xx’ for some x in M and x’ in N. This demands
that yxR. Hence yxR  MR  M. Thus
y NM   and the desired result follows.

(ii). Let P be a prime ideal of R and let abP.
Therefore Rab  RP  P.

Since Ra and Rb are ideals of R.  Then
RaRbRbRa  (using the result(i)).

Also RaRRRaRa   . Hence Rab = RaRb
= RbRa  .

This yields, RaRb = (Rab)  P and
since P is prime, RaP or RbP. Therefore
(a =) af(a)aP or (b =) bf(b)bP and the
desired result follows.

(iii). Since R has a mate function ‘f’. Theorem
2.10 guarantees that R has no non-zero
nilpotent elements. If xy = 0 then (yx)2 =
(yx)(yx) = y(xy)x = 0. This implies yx = 0.
Again for all rR, (xry)2 = (xry)(xry) =
xr(yx)ry = 0. Therefore xry = 0. Consequently
R has (, IFP).

We conclude this paper with the
follwing Remark.

Remark 3.4. We observe, in view of
Theorem 2.9, that the three results in Theorem
3.8  hold good for a right normal P1 seminear-
ring.
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