Ultra Scientist Vol. 24(1)A, 91-98 (2012).

Some Special Seminear-ring Structures |1

R. PERUMAL! R. BALAKRISHNAN? and S. UMA3

1Department of Mathematics, Kumaraguru College of Technology,
Coimbatore-641049, Tamilnadu (INDIA)
2Department of Mathematics, V.O.Chidambaram College,
Thoothukudi-628008, Tamilnadu (INDIA)
3Department of Mathematics, Kumaraguru College of Technology,

Coimbatore-641049, Tamilnadu (INDIA)
E-mail: perumalnew_07@yahoo.co.in

(Acceptance Date 11th January, 2012)

Abstract

In this paper we introduce the concepts of Py and Py’ seminear-
rings where ‘k’ is a positive integer and study some of their properties.
We also discuss certain properties of P; and P1' seminear-rings and also

obtain their characterizations.
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1.Introduction

This paper is a continuation of the
authors’ earlier paper®. In the previous paper®
properties of P(r,m) seminear-rings have been
discussed. The purpose of the present paper
is to introduce the concept of Py and Py’
seminear-rings. By a seminear-ring ‘R’ we
mean only a right seminear-ring (R, +, .)
with an absorbing zero as defined®. We write
ab to denote the product a.b for any two
elements a, b in R. For terms and notations used

but left undefined we refer tol3.

We recall® that a function f: R - Ris a
mate function if x = xf(x)x for all x in R.

1.1. Notations :

(i) E={ecR/e*=e}-set of all idempotents of R.

(i1) C(R) ={reR/ rx=xr for all xeR}- centre
of R.

(iii) L={xeR / x*= 0 for some positive integer
‘k’}- set of all nilpotent elements of R.
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1.2. Preliminary results:

We freely make use of the following

results from® and designate them as K(1),

K(2), K(3) and K(4).

K(1): Aseminear-ring R has no non-zero nilpotent
elements if and only ifxX*=0=x=0
forall x inR. (This result in prob® 14, P.9
in respect of rings is valid for R as well).

K(2): If R admits a mate function f, then xf(x),
f(x)xeE and Rx = Rf(x)x and xR= xf(x)R
for all x in R (Proposition® 3.2).

K(3): A mate function ‘f” of R is called a P3
mate function if for every x in R, xf(x) =
f(x)x (Definition® 4.2)

K(4): If Ris a P(1,2) seminear-ring i.e. XR =
Rx2 for all xeR then Ec C(R) (Theorem®
4.18).

2. Px and Py’ seminear-ring :

In this section we define Px and Py’
seminear-rings and give certain examples of
such seminear-rings.

Definition 2.1. A seminear-ring R is
called a Py seminear-ring (Py’ seminear-ring)
if there exists a positive integer ‘k’ such that
xR = xRx (RxX = xRx) for all x in R.

Examples 2.2.

(i) Let R = {0, a, b, ¢, d}. We define the

semigroup operations “’+”’and *’.”” in R as follows.
+ 0 a b C d
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Then (R, +, .) is a Py as well as a Py’
seminear-ring for all positive integer k.

(if) Let R = {0, a, b, ¢, d}. We define the
semigroup operations “’+”and **.” inR as follows.

+ 0 a b C d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d
. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b b b
d 0 a d d d

Then (R, +, .) is a Px seminear-ring for all
positive integers k but not a Py’ seminear-ring
for any positive integer k.

(iii) The direct product*® of any two seminear-
fields is a Py as well as a Py’ seminear-ring.

Theorem 2.3. Any homomorphic
image of a Py(Px’) seminear-ring is a Px(Px’)
seminear-ring.

Proof. The proof is straight forward.

Similar to the definitions of left normal
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and right normal seminear-ring (Definition® 2.5)
we define the following:

Definition 2.4. Let ‘r’ be a positive
integer. We say that R is a left-r-normal (right-
r-normal) seminear-ring if acRa'(a € a"'R)
forall ‘a’ inR.

Example 2.5.

(@) The seminear-ring of example 2.2(i) is a
left-r-normal as well as a right-r-normal
seminear-ring.
(b) Trivially any Boolean seminear-ring is a
left-r-normal as well as a right-r-normal
seminear-ring.

Proposition 2.6. Every left-r-normal
(right-r-normal) seminear-ring is a left (right)
normal seminear-ring.

Proof. Let R be a left-r-normal
seminear-ring with r > 2. Clearly then for all
acR, acRa=(Ra)acRa.i.e. ac Ra.
Therefore R is a left normal seminear-ring.

Proof is similar when R is a right-r-
normal seminear-ring.

We shall now discuss some elementary
properties of Py(Py’) seminear-ring.

Proposition 2.7. A left identity (right
identity) of a Px(Px’) seminear-ring is also a
right identity(left identity).

Proof. Let R be a Px seminear-ring.
Let ‘e’ be a left identity of R. Then x = ex for
all xeR. Now €“R = eRe = eR = eRe. Then
there exists yeR such that, x = ex = eye =
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(ey)e = ye. Hence xe = (ye)e = ye? = ye = Xx.
i.e. x=ex=xe. Therefore ‘e’ is a right identity
as well.

Let R be a Py’ seminear-ring and ‘e’
be a right identity of R. Then x = xe for all
xeR. Now Re* = eRe = Re = eRe. Then there
exists y’eR such that, x = xe = ey’e = e(y’e)
=ey’. Henceex = e(ey’) =e?y’ = ey’ =Xx. i.e.
x = xe = ex. It follows that ‘e’ is also a left
identity.

Remark 2.8. Aright identity®® of a Py
seminear-ring need not be a left identity. The
following example substantiates this. We
consider the seminear-ring R = {0, a, b, ¢, d}
where the semigroup operations “’+”” and *’.”
in R are defined as follows.

+ 0 a b c d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d
. 0 a b C d
0 0 0 0 0 0
a 0 a a a a
b 0 b b b b
c 0 c c c c
d 0 d d d d

Here a, b, ¢, d are right identities but none is a
left identity.

Theorem 2.9. A Px (Py’) seminear-
ring R has a mate function if and only if R is a
right-k-normal (left-k-normal) seminear-
ring.
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Proof. Let R be a Px seminear-ring.
Then xR = xRx for all x in R. If R has a mate
function “f” then x = xf(x)x € xRx (= xR) and
this implies x € x*R. i.e. Ris aright-k-normal
seminear-ring.

Conversely let R be a right-k-normal
Py seminear-ring. Therefore x € xR ( = xRx)
for all x in R. Then there exists some y in R
such that x = xyx. Clearly then x = xf(x)x
where we set f(x)=y. It follows that f is a mate
function for R.

The proof is similar when R is a Py’
seminear-ring.

Theorem 2.10. Let R be a P or a Py’
seminear-ring. If R admits mate functions then
R has no non-zero nilpotent elements i.e.

L= {0}.

Proof. Let R admit a mate function
“f *. We shall show that x> = 0 = x = 0 for x in
R (1)

Case (i): Let R be a P; seminear-ring,
i.e. XR=xRx for all x inR. We have x = xf(x)xe
XRx. But XRx= (XR)x = (XRX)x = XRx?= (XR)x?.
Then there exists yeR such that x = xyx?.
Consequently (1) holds.

Case (ii): Let R be a Px seminear-
ring with k >1. Now xR = xRx for all x in R.
Since x = xf(x)xe xRx = xR, x = x*y for some
‘v inR. If k=2, then x = x%y . If k > 2, we
write x = x2 (x*?y) and therefore (1) is true.

Case (iii): Let R be a P;' seminear-
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ring, i.e. Rx =xRx for all x in R. Therefore x
= xf(x)x € XRx = X(RX) = X(XRx) = Xx?Rx =
X = X?(Rx). Then there exists yeR such that
x = x2yx. Thus (1) holds good.

Case (iv): Let R be a Py’ seminear-
ring with k >1. Now Rx* = xRx for all x in R.
Since x = xf(x)x € xRx = Rx, we get x =y2
X for somey2 inR. If k= 2, then x = y’x2 If
k> 2, we write x = (y’x*?) x> and again (1)
holds.

Now K(1) gurantees that, in all the
four cases, L = {0}.

Theorem 2.11. Let R be a P(1,2)
seminear-ring with a mate function f. Then R
is a
(a) Px seminear-ring for all positive integer k.

(b) Py’ seminear-ring for all positive integer k.

Proof. Since R is a P(1,2) seminear-
ring. K(4) demands that every idempotent is
central. i.e E < C(R).

(@) Case (i): Letk =1. Forall x in R,
xR = x(f(x)xR) = x(Rf(x)x) (since E < C(R))
=xRx (By K(2)) i.e. xR =xRx. Hence R is
a P1 seminear-ring.

Case (ii): For k >1 and for any xeR,
XR = x(X! R) < xR = xRx (using the result
for k=1). Therefore xR < xRx. Also xRx =
XRxf(x)x = x(Rxf(x))x = x(xf(x)R)x (since E
c C(R)) = x(xR)x (By K(2)) = x°R = X(XRx) =
X(x’Rx) = x°Rx. Repeating this process, we
obtain xRx = XRx < xR for all positive integers
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k .Therefore XRx = XR. Thus xRx = xR for

all xin R. Hence R is Py seminear-ring for any
positive integer k.

(b) Case(i): Letk = 1. For all x in R,
Rx = Rxf(x)x = (Rxf(x))x = (xf(x)R)x (since E
< C(R)) = xRx (By K(2)). i.e. Rx= xRx. Hence
R is a P1" seminear-ring.

Case (ii): Let k >1. Since E < C(R)
we have for all y,x in R, yxk = (yx)x! =
(yxFEOX)XET = (xFEOYx)X<t = (xF)yx*Y)xe
xRx. Therefore Rx* ¢ xRx. Also xyx =
(xFO)X)yx = xyf(x)x? = (xF(X)X)yf(x)x? =
xy(f(x))2x3. Repeating this process, we obtain
xyx = xy(f(x))1x* e Rx*for all positive integers
k. Therefore xRx = Rx. Thus xRx = RxX for

all x in R. Hence R is Py’ seminear-ring for any
positive integer k.

Remark 2.12. We observe that a Py
seminear-ring need not be a P(1,2) seminear-ring.
For example, we consider the seminear-ring
R={0, a, b, ¢, d} where the semigroup operations
“+7and “.” in R are defined as follows.

+ 0 a b C d
0 0 a b c d
a a a b d d
b b b b d d
c c d d c d
d d d d d d
. 0 a b c d
0 0 0 0 0 0
a 0 a a a a
b 0 a b b b
c 0 a b c d
d 0 a d d d
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Here (R, +, .) is a Px seminear-ring for all
positive integers k. Even though the identity
function serves as a mate function for R, it is
not a P(1, 2) seminear-ring.

Proposition 2.13. Let R admit a P3
mate function ‘f “. Then every right ideal (left
ideal) of a Py (Px’) seminear-ring R is a
completely semi prime ideal.

Proof. Case (i): Ifk=1. Letl bea
right ideal of R and let a<l. Then a = af(a)a
= a(f(a)a) = a(af(a)) (since f is a P3 mate
function) = a’f(a) e IRc I. i.e. a el and
the result follows.

Case (ii): Let k >1. For acR, a =
af(a)a € aRa = (a*R) and therefore there
exists yeR such that a = ay. When k = 2, a2
el=>a=ayelRcl ie a%ecl =ael
When k>2, a?cl = a = a(@?) e IRc I.
i.e. ael and the desired result follows.

The proof is similar when R is a Py’
seminear-ring.

Theorem 2.14. Any ideal of an left-
k-normal Py’ (right-k-normal Py) seminear-ring
R is also an left-k-normal P, (right-k-normal Py)
seminear-ring in its own right.

Proof. Since R is a left-k-normal Py’
seminear-ring Proposition 2.9 guarantees the
existence of a mate function f for R. Let M be
an ideal of R. Therefore f(x)xf(x)e RMR <
M for all x in M. Thus we can define a map g:
M—M such that g(x) = f(x)xf(x) for all xeM.
Obviously then xg(x)x = x and therefore g is a
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mate function for M.

Now let x, aeM. Since RxK= xRx
there exists beR such that axk = xbx =

x(bxg(x))x € X(RM)x < xMx. Therefore Mx¥
 XMX .......... 1) .

Also since xaxe xRx = RxX, there
exists yeR such that xax = yx*. Again xax =
xg(X)(xax) = xg(x)yx = y2 x¥ where y2 =
xg(x)yeMR < M. Therefore xMx <

From (1) and (2) we get Mx¥ = xMx
for all xeM. i.e. M is a P’ seminear-ring. Since
M has a mate function 'g' then M is a left-k-

normal seminear-ring as well (from Proposition
2.9).

The proof is similar when R is a right-
k-normal Py seminear-ring.

Definition” 2.15. A seminear-ring R
is said to fulfill the right(left) Ore condition with
respect to a given subsemigroup ‘A’ of (R, .) if
for every acA, reR there exist a;€A, rieR
such that ra; = ari(air = r;a).

Proposition 2.16. Let R be a Py (Px’)
seminear-ring. Then R satisfies left (right) Ore
condition.

Proof. Let A be any subsemigroup of
R and let acA, reR. Since a‘R = aRa there

exists yeR such that ar = aya. i.e. a;r = ar

where a; = akeAand ry =ya e Rand R fulfills
the left Ore condition.

In a similar fashion we can prove that
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the Py’ seminear-ring fulfills the right Ore
condition.

3. Properties of P; and P;' seminear-rings:

We furnish below simple characterizations
of P, and P;' seminear-ring.

Theorem 3.1. Let R be a seminear-
ring with a mate function f. Then we have

(i) every left ideal of R is a right ideal of R if
and only if R is a P; seminear-ring.

(ii) every right ideal of R is a left ideal of R if
and only if R is a P;' seminear-ring.

Proof. Since R is a seminear-ring with
a mate function f.

(i). Assume that every left ideal of R is a right
ideal of R. By the assumption, Rx being a left
ideal for every xeR, is also a right ideal of R.
Therefore (RX)R < Rx. Since f is a mate
function x = xf(x)x. From this we get xR =
Xf(X)XR € XRxR < XRx........ (2).

Clearly xRx  xR.......... (2). From (1) and (2)
we get xR = xRx for all xeR. i.e. Ris a P;
seminear-ring.

Conversely, let A be any left ideal of
R, then RA — A. Let acA and yeR, we have
ay €aR = aRa = ay = ay’a (for some y’ in
R) =(ay’)a €Ra. This forces ayeRAc A=
AR < A and hence A is an ideal.

(ii). Assume that every right ideal of R is a
left ideal of R. By the assumption xR, being a
right ideal for every xeR, is also a leftt ideal
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of R. Therefore R(xR) < xR. Since f is a mate
function x = xf(x)x. From this we get Rx =
Rxf(x)x € RxRx < XRx........ (2).

Clearly xRx < Rx.......... (2). From (1)
and (2) we get xR = xRx for all xeR. i.e. R is

a P1' seminear-ring.

Conversely, let A be aright ideal of R,
then ARCA. Let acA and yeR, we have ya
eRa =aRa = ya =ay’a, forsomey’ inR =
a(y’a) € aR. This forces yacAR < A = RAC
A. Hence A is an ideal.

Definition’ 3.2. A seminear-ring R is
said to have Insertion of Factors Property-
IFP for short - if forx,y e R, xy=0 = xry =
0 for all r in R. If in addition, xy =0 = yx=0
for x, y in R we say R has (x, IFP).

Theorem 3.3. Let R be a left normal
P,' seminear-ring. Then

(i) (M N N )= MN where M and N are ideals
of R

(ii) Any prime ideal is a completely prime ideal.
(iii) R has (*, IFP)

Proof. Since R is left normal Py’
seminear-ring. Proposition 2.9 guarantees that
R has a mate function f.

(i). If M, N are ideals of R then (M NN)? =
(MAN)(MNN)< M NN . Alsoforall “‘a’in
M NN, a=a(f(a)a) e(MNN)(MNN). This
forces(M NN )=(M NN)?. Further, (M NN)
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=(MNN)(MNN) < MN.

To prove the reverse inclusion, let us
take yeMN. Clearly then yeMN < N. Also y
=xx’ for somex in M and x” in N. This demands
that yexR. Hence yexR < MR < M. Thus
ye M NN and the desired result follows.

(ii). Let P be a prime ideal of R and let abeP.
Therefore Rab « RP < P.

Since Ra and Rb are ideals of R. Then
Ra 1 Rb = RaRb (using the result(i)).

Also Ra =RaNR =RaR. Hence Rab = RaRb
= RaRb.

This yields, RaRb = (Rab) < P and
since P is prime, RacP or RbcP. Therefore
(a =) af(a)aeP or (b =) bf(b)beP and the
desired result follows.

(iii). Since R has a mate function *f’. Theorem
2.10 guarantees that R has no non-zero
nilpotent elements. If xy = 0 then (yx)? =
(YX)(yx) = y(xy)x = 0. This implies yx = 0.
Again for all reR, (xry)? = (xry)(xry) =
xr(yx)ry = 0. Therefore xry = 0. Consequently
R has (*, IFP).

We conclude this paper with the
follwing Remark.

Remark 3.4. \We observe, in view of
Theorem 2.9, that the three results in Theorem
3.8 hold good for a right normal P; seminear-
ring.
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