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Abstract

MHD flow of a Jeffrey fluid in a parallel plate channel is
investigated when the walls are provided with non-erodible porous lining.
The flow in the free flow region is governed by Jeffrey model and the
flow in the porous region is described by Darcy law. The influence of
the thickness of porous lining on the velocity field in the channel has
been studied. The results are depicted graphically and discussed for
various relevant parameters. It is observed that the velocity increases
with the increase in Jeffrey parameter whereas the opposite behavior is
noticed due to the increase in magnetic parameter M . It is also found
that the skin friction is higher for non-Newtonian Jeffrey fluid when
compared with Newtonian fluid.
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I. Introduction

          Interest in the flows of non-Newtonian
fluids has increased due to the applications in
science and engineering including thermal oil
recovery, food and slurry transportation, polymer
and food processing etc. A variety of non-
Newtonian fluid models have been proposed

in the literature keeping in view of their several
rheological features. There is one subclass of
non-Newtonian fluids known as Jeffrey fluids
which have been attracted much by the
researchers in view of their simplicity. This
fluid model is capable of describing the
characteristics of relaxation and retardation
times. It has been accepted that majority of
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the physiological fluids behave like a non-
Newtonian fluids. Hayat et al.1 have analyzed
the influence of an endoscope on the peristaltic
flow of a Jeffrey fluid under the effective of
magnetic field in a tube. Peristaltic motion of
a Jeffrey fluid under the effect of a magnetic
field in a tube was discussed by Hayat and
Ali2.

MHD flow between parallel plates is
a classical problem that occurs in MHD power
generators, MHD pumps, accelerators,
aerodynamic heating, electrostatic precipitation,
polymer technology, petroleum industry,
purification of crude oil and fluid droplets and
sprays. Especially the flow of non-Newtonian
fluids in channels is encountered in various
engineering applications. For example, injection
molding of plastic parts involves the flow of
polymers inside channels. During the last few
years the industrial importance of non-Newtonian
fluids is widely known. Such fluids in the
presence of a magnetic field have applications
in the electromagnetic propulsion, the flow of
nuclear fuel slurries and the flows of liquid
state metals and alloys. The effect of magnetic
field on viscous fluid has also been reported
for treatment of the following pathologies:
Gastroenric pathologies, rheumatisms, constipation
and hypertension that can be treated by placing
one electrode either on the back or on the
stomach and the other on the sole of the foot
and this location will induce a better blood
circulation. Sarparkaya3 has presented the first
study for MHD Bingham plastic and power law
fluids.  Effect of magnetic field on pulsatile flow
of blood in a porous channel was investigated
by Bhuyan and Hazarika4. Misra et al.5 have
investigated a mathematical modeling of blood
flow in porous vessel having double stenosis
in the presence of an external magnetic field.

Ahmed and Sajid6 investigate the
combined effects of magnetic field and slip
boundary conditions on the thin film flow of a
Jeffrey fluid on a vertically moving belt. The
flow of non-Newtonian fluids through a porous
medium under different conditions was studied
by Chamkha et al.7. Krishna Gopal Singha8

investigated analytical solution to the problem
of MHD free convective flow of an electrically
conducting fluid between two heated parallel
plates in the presence of an induced magnetic
field. Sreenadh et al.9 investigated the MHD
free convective flow of a Jeffrey fluid between
coaxial cylinders. Recently, Santhosh and
Radhakrishnamacharya10 studied a two fluid
model for the flow of Jeffrey fluid in the
presence of a magnetic field through a porous
medium in tubes of small diameters. Nallapu
et al.11 are studied the effects of porous
medium on a two-fluid model for the flow of
Jeffrey fluid in tubes of small diameters. It is
assumed that the core region consists of Jeffrey
fluid and Newtonian fluid in the peripheral
region. Kumaraswamy Naidu et al.12 discussed
the effect of the thickness of the porous
material on the parallel plate channel flow of
Jeffrey fluid when the walls are provided with
non-erodible porous lining.

The object of this paper is to develop
a theoretical model for analyzing the conducting
Jeffrey fluid flow in a parallel plate channel,
when one of the parallel walls is provided with
non-erodible porous lining. The influence of
the non dimensional parameters representing
the thickness and the permeability of the porous
medium on the velocity field in the channel
has been studied. The results are depicted
graphically and discussed for various relevant
parameters.
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II. Mathematical Formulation :

We consider the rectilinear flow of a
conducting Jeffrey fluid through a channel
formed by two rigid impermeable parallel walls
at 0y   and y h  as shown in Fig. 1.  The
lower wall is lined with a homogenous and

isotropic porous material of thickness '( 0)h 
and thus dividing the flow region into two zones.
Zone 1 denotes the region of the free flow
between the upper impermeable wall and the

nominal surface 'y h  and Zone 2 represents
the region of flow through the porous material.
A uniform transverse magnitic field of strength

oB is applied perpendicular to the plates. The
Zone 1 is described by Jeffrey model whereas
the flow in Zone 2 is governed by Darcy law.

Fig.1. Physical model

The flow which is caused by a uniform
pressure gradient in the longitudinal direction
in both the zones is assumed to be fully
developed and the fluid properties are all
assumed to be constant.  Then the flow in Zone
1 is governed by the equation
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whereu is the velocity, 1 is the Jeffrey parameter,,

P is the pressure,  is the viscosity, , Q is the
Darcy  velocity, k is absolute permeability of

the material, 0B is the magnetic field.
The boundary conditions are

0u  at y h (3)
and the BJ boundary condition (Beavers and
Joseph13)  is
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where   is the density, R is the Reynolds number,,

u  is the average velocity in the channel,   is
the thickness of the porous material, M is the
magnetic parameter.

In view of (5), equations (1)-(4) reduce to
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III. Solution of the problem :

Solution of (6) satisfying (8) and (9) is

1
12 11 2

(1 )a av A e A e P
a

   
    (10)

and

3 1 1 2

1

( 1)
( 1)1

a

B a

A B e A Bv
B e

a









  


 
  
 

(11)

where
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IV. Mass Flow Rate :

To find the quantitative effect of slip on the flow,
we calculate the non-dimensional flow rate
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V. Skin Friction

We calculate the absolute value of
skin friction as
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Table 1. Skin friction  at 1y  for

different values of Jeffrey parameter 1

1 0 0.2 0.4 0.6 0.8

 0.0040 0.0041 0.0042 0.0043 0.0044
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Table 2.  Skin friction   at 1y  for
different values of Magnetic parameter M

M 1 1.5 2 2.5 3

 0.0041 0.0020 0.0012 0.0008 0.0005

VI. Results and Discussions

The numerical values of velocity are
computed from equation (10) and are depicted
in Figures 2 to 7 for flow in a channel with one
side porous lining.  We observe from Fig. 2
that the velocity decreases with the increase
in the thickness of porous layer . We observe
the same phenomenon for velocity from Fig.
3 and 4 with an increase in slip parameter
and permeability parameter . From Fig. 5
we observe that the velocity increases with
the increase in the pressure gradient P.  From
Fig. 6 we observe that the velocity increases
with the increase in Jeffrey parameter 1. From
Fig. 7 we observe that the velocity decreases
with the increase in Magnetic parameter M.
From Figure 8 we observed that the mass flow
rate (m) covering one side porous lining
decreases with the increase in the permeability
parameter .  From Figures 9 we observe that
the mass flow rate (m) covering one side porous
lining decreases with the increase in the
magnetic parameter M. From Figures 10 we
observe that the mass flow rate (m) covering
one side porous lining increases with the
increase in the magnetic parameter M From
Figures 11 we observe that the mass flow rate
( )m covering one side porous lining increases

with the increase in the Jeffrey parameter 1 .
From Figure 12 we observed that the mass
flow rate ( )m covering one side porous lining

decreases with the increase in the permeability
parameter  .

The numerical values of the magnitude
of skin friction at the wall 1y   is computed
from equation (15) for different values of
Jeffrey parameter 1 and magnetic parameter
M and is presented in Table 1 and Table 2. It
is observed that the skin friction increases with
increase in Jeffrey parameter 1 and decreases
with increase in magnetic parameter M .
Higher skin friction is observed in the non-
Newtonian Jeffrey fluid when compared with
a Newtonian fluid.

Fig. 2. Velocity distribution for various
values of   for fixed

1P=0.1,  =0.5,  =0.1, =2, M=1   

Fig. 3. Velocity distribution for various
values of  for fixed

1P=0.1,  =0.5,  =0.1, =2, M=1  
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Fig. 4. Velocity distribution for various
Values  for fixed

 
1=0.1,  =0.5,  =0.1,  =0.1, M=1 P   

Fig. 5. Velocity distribution for various
values of P for fixed

 
1=2,  =0.5,  =0.1,  =0.1, M=1    

Fig. 6. Velocity distribution for various
values of 1 for fixed

  =2, =0.1, =0.1, =1 P M 

     Fig. 7. Velocity distribution for various
values of M for fixed

1 =2, =0.1, =0.5, =0.1P  

 Fig. 8. Variation of m with  for fixed
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 Fig. 9. Variation of m with   for fixed
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 Fig. 10. Variation of with for fixed
 5, =0.1, =0.1, 1   P M

Fig. 11. Variation of m with Magnetic

parameter M for  fixed

 3, =0.1,  =0.1,  =0.1 P  

Fig. 12. Variation of m with Magnetic parameter

M for fixed

1=0.1,  =0.1,  =0.1,  =0.1P   

VII. Conclusion

The influence of the thickness of
porous lining on the velocity field in the channel
has been studied. It is observed that the
velocity increases with the increase in Jeffrey
parameter whereas the opposite behavior is
noticed due to the increase in magnetic
parameter. It is also found that the skin friction
is higher for non-Newtonian Jeffrey fluid when
compared with Newtonian fluid.
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