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Abstract

The object of the present paper is to study weakly concircular
symmetric and weakly concircular Ricci symmetric -Trans-Sasakian
manifolds and the relationship among the 1-forms A, B and D for locally
symmetry in a weakly symmetric and Ricci symmetry of -Trans-Sasakian
manifolds. Also the geometric meaning of 1-forms B and D for recurrency.
Geometrical meaning for B and D for Ricci recurrency in a weakly Ricci
symmetric -Trans-Sasakian manifolds.

Ultra Scientist Vol. 24(1)A, 127-148 (2012).

1 Introduction

In 2011, Shyamal Kumar12 Hui has
studied the weak concircular Symmetries of
trans-Sasakian manifolds. In 1989 Tamassy
and Binh9 have introduced the following
definition:

Definition 1.1 A non flat Riemannian

manifold n(M ,g)  (n>2) is called a weakly
symmetric manifold if its curvature tensor R
of type (0, 4) satisfies the condition1,2

XR)(Y, Z, U, V) A(X)R(Y, Z, U,V) B(Y)(X, Z, U,V)  

   R)(Y, Z, U, V) A(X)R(Y, Z, U, V) B(Y)(X, Z, U, V)  

                              H(Z)R(Y,X, U,V) D(U)R(Y, Z, X,V) 

E(V)R(Y, Z, U,X) (1.1)

for all vector fields X, Y, Z, U, V n(M ); (M) 

being the Lie algebra of smooth vector fields
of M, where A,B,H,D and E are 1-forms and
 denotes the operator of covariant differen-
tiation with respect to the Riemannian metric
g. The 1-forms are called the associated 1-
forms of the manifold and an n-dimensional
manifold of this kind is denoted by n(WS) . In
1999 De and Bandyopadhyay3 studied a and
proved that in such a manifold the associated
1-forms B=H and D=E. hence (1.1) reduces
to the following:
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 XR)(Y, Z, U, V) A(X)R(Y, Z, U, V) B(Y)(X, Z, U,V)  

R)(Y, Z, U, V) A(X)R(Y, Z, U, V) B(Y)(X, Z, U,V)  
   B(Z)R(Y, X, U,V) D(U)R(Y, Z, X, V) 

         D(V)R(Y, Z, U,X)                        (1.2)

A transformation of an n-dimensional
Riemannian manifold M, which transforms
every geodesic circle of M into a geodesic circle,
is called a concircular transformation11. The
interesting invariant of a concircular transfor-

mation is the concircular curvature tensor  C ,
which is defined11 by

 rC(Y, Z, U,V) R(Y, Z, U, V) [g(Z, U)g(Y, V) g(Y, U)g
n(n 1)

  




rC(Y, Z, U,V) R(Y, Z, U, V) [g(Z, U)g(Y, V) g(Y, U)g(Z, V)]
n(n 1)

  


,   (1.3)

where r is the scalar curvature of the manifold.

In 2009, Shaikh and Hui7,8 have
introduced the following definition:

Definition 1.2 A Riemannian manifold
(Mn, g) (n>2) is called weakly concircular
symmetric manifold if its concircular curvature

tensor  C , of type (0, 4) is not identically zero
and satisfies the condition
 

X( C)(Y, Z, U,V) A(X)C(Y, Z, U, V) B(Y)C(X, Z, U, V)    

   H(Z)C(Y, X, U, V) D(U)C(Y, Z, X, V)  

            E(V)C(Y, Z, U, X)                 (1.4)

for all vector fields X, Y, Z, U, V n(M ) ,
where A, B, H, D and E are 1- forms an
n-dimensional manifold of this kind is denoted
by  n(WCS) . Also it is shown that7, in a the
associated 1-forms B=H and D=E, and hence

the defining condition (1.4) of a  
n(WCS)

reduces to the following form:
 

X( C)(Y,Z,U,V) A(X)C(Y,Z, U,V) B(Y)C(X,Z,U,V)    

  B(Z)C(Y,X, U, V) D(U)C(Y, Z,X,V)  

   D(V)C(Y, Z, U, X)    (1.5)
where A, B, D are 1-forms.
In 1993, Tamassy and Binha have introduced
the following definition:

Definition 1.3 A Riemannian manifold
(Mn, g) (n>2) is called weakly Ricci symmetric
manifold if its Ricci tensor S of type (0,2) is
not identically zero and satisfies the condition
 X( S)(Y, Z) A(X)S(Y, Z) B(Y)S(X, Z) D(Z)S(Y,X)   

                                      (1.6)
where A, B, and D are three non-zero 1-forms,
called the associated 1-forms of the manifold,
and  denotes the operator of covariant differen-
tiation with respect to the metric tensor g. Such
an n-dimensional manifold is denoted by
 

n(WCS) .

    Let  i{e : i 1, 2,........., n}  be an orthonormal
basis of the tangent space at each point of the
manifold and let

 n
i i

i 1
P(Y, V) C(Y,e ,e , V)


  ,             (1.7)

then from (1.3), we get

 rP(Y, V) S(Y,V) g(Y, V)
n

  .        (1.8)

The tensor P is called the concircular Ricci
symmetric tensor4, which is a symmetric tensor
of type (0, 2).
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In 2005, De and Ghosh have introduced
the following definition:

Definition 1.4 A Riemannian manifold
(Mn, g) (n>2) is called weakly concircular Ricci
symmetric manifold if its concircular Ricci
tensor P of type (0,2) is not identically zero
and satisfies the condition
 X( P)(Y, Z) A(X)P(Y, Z) B(Y)P(X, Z) D(Z)P(Y, X)    ,
 (1.9)
where A, B and D are three 1-forms.

In13, A. Bejancu and K. L. Duggal
introduced the notion of -Sasakian manifolds
with indefinite metric. In 1998, Xu Xufeng and
Chao Xiaoli proved that every -Sasakian
manifold is a hyper surface of an indefinite
Kaehlerian manifold and established a necessary
and sufficient condition for an odd dimensional
Remannian manifold to be an -Sasakian
manifolds14. In15, U. C. De and Avijit Sarkar
introduced and studied the notion of -
Kenmotsu manifolds with indefinite metric
giving an example.

Section 2 is devoted to the preliminary
results of -Trans-Sasakian manifolds that are
needed in the rest of the sections.Recently S.
K. Hui12 studied weak concircular Symmetries
of Trans-Sasakian manifolds. However, in
section 3 of the paper we have obtained all
the 1-forms of a weakly concircular Symmetric
-Trans-Sasakian manifolds and hence such
a structure exist always. In section 4 we study
weakly concircular Ricci Symmetric -Trans-
Sasakian manifolds and obtained all the 1-
forms of a weakly concircular Ricci Symmetric
-Trans-Sasakian manifold and consequently
such a structure is always exist. Also it is
proved that the sum of the associated 1-forms

of a weakly concircular Ricci Symmetric -
Trans-Sasakian manifold is non-vanishing
everywhere.

In section 5, the geometrical meaning
of the new 1-forms B and D appeared in the
definition 1.5 is obtained if a weakly concircular
Symmetric -Trans-Sasakian manifolds is locally
symmetric, relationship among the 1-forms A,
B and D of the definition 1.5 and geometrical
meaning of 1-forms B and D for recurrency
is also obtained. In section 6, the geometrical
meaning of the new 1-forms B and D appeared
in the definition 1.9 is obtained if a weakly
concircular Symmetric -Trans-Sasakian
manifolds is locally Ricci symmetric, relationship
among the 1-forms A, B and D of the definition
1.9 and geometrical meaning of 1-forms B and
D for recurrency is also obtained. Some of
the corollaries in each theorem are given. In
this section of the paper wherein we have
provided an concrete example for the existence
of weakly Concircular Ricci-symmetric -
Trans-Sasakian manifolds.

Some of the results of Shamal Kumar
Hui12 shall includes as a special cases of our
results for =1.

2. Preliminaries :

In this section, we list the basic
definitions and known results of -Trans-
Sasakian manifolds.

          Definition16 2.1. A (2n+1)-dimensional
differentiable manifold (M, g) is said to be an
-almost contact metric manifold, if it admits
a (1, 1) tensor field , a structure vector field
, a 1-form  an indefinite metric g such
that



 2 I , ( ) 1,         (2.1)

 g( , ) , (X) g(X, )       (2.2)

 g( X, Y) g(X,Y) (X) (Y)      (2.3)

for all vector fields X,Y on M, where  is 1 or
-1 according as  is space like or time like and
rank  is 2n.

From the above equations, one can
deduce that

 0, ( X) 0    

Definition 2.2 An -almost contact
metric manifold is called an -Trans-Sasakian
manifold if

 x( )Y {g(X,Y) (Y)X} {g( X, Y) (Y) X},        

  ( )Y {g(X, Y) (Y)X} {g( X, Y) (Y) X},         (2.4)

for any X, Y on M, where  is Live-Civita
connection with respect to g.

We note that if =1, i.e. structure
vector field  is space like, then an -Trans –
Sasakian manifold is usual trans-Sasakian
manifold5.

A Trans-Sasakian manifold of type (0,
0), (0,), (, 0) are the cosympletic, -
Kenmotsu and -Sasakian manifolds respectively.
In particular if =1,=0, and =0,=1, then
trans-Sasakian manifold reduces to Sasakian
and Kenmotsu manifolds respectively.
For -Trans –Sasakian manifold, we have17

 X( ) { X (X (X) }        (2.5)

 X( )Y g( X, Y) {g(X, Y) (X) (Y)}       

 (2.6)
 2 2R(X, Y) ( ){ (Y)X (X)Y}     

 2 { (Y) X (X) Y}     

   2 2{(Y ) X (X ) Y (Y ) X (X ) Y}           
 (2.7)
 2 2(R(X, Y)Z) ( ){g(Y, Z) (X) g(X, Z) (Y)}      

   2 { (X)g( Y, Z) (Y)g( X, Z)}     

             2 2{(X )g( Y, Z) (Y )g( X, Z)}     

            {(X )g( Y, Z) (Y )g( X, Z)}     
                                                                             (2.8)
 2 2S(X, ) {2n( ) ( )} (X) ( X) (2n 1)(X )           

S(X, ) {2n( ) ( )} (X) ( X) (2n 1)(X )             (2.9)

 2 2R( , X) { ( )}{ X (X) }          

  {2 ( )}( X)    (2.10)

           2 2S( , ) 2n{ ( )}       (2.11)

           2 ( ) 0   (2.12)

where R is the curvature tensor of type (1, 3)
of the manifold and S is Ricci tensor.

3. Weakly Concircular symmetric -Trans-
Sasakian manifolds:

Definition 3.1 A -Trans-Sasakian
manifolds (M2n+1 ,g) (n>1) is said to be weakly
concircular symmetric if its concircular curvature

tensor  C  of type (0, 4) satisfies (1.5).

Setting Y=V=ei in (1.5) and taking summation
over i, 1i2n+1, we get
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X

dr(X)( S)(Z, U) g(Z, U)
n

 

 r rA(X)[S(Z, U) g(Z, U)] B(Z)[S(X, U) g(X, U)]
n n

   

 rD(U)[S(X, Z) g(X, Z)] B(R(X, Z)U) D(R(X, U)Z)
n

   

 r [{B(X) D(X)}g(Z, U) B(Z)g(X, U) D(U)g(Z,X)]
n(n 1)

   
  (3.1)

Putting X=Z=U= in (3.1) and then using (2.7) and (2.11), we obtain

 2

2 2 2
2n {2 ( ) 2 ( ) ( )} dr( )A( ) B( ) D( )

2n { ( ) } r
        

     
    

 (3.2)

Hence we can state the following:

Lemma 3.1 In a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), the relation (3.2) holds.
Next, substituting X and Z by  in (3.1) and
then using (2.7) and (2.12) we obtain

 dr( )( S)( , U) (U)
n


   


 
 r[A( ) B( )][S(U, ) (U)]

n
      



  
 2 2 (n 2)rD(U)[(2n 1){ ( )} ]

n(n 1)


      
 

     
 2 2 r[ ( ) ] (U)D( )

n(n 1)
       

  .

 (3.3)

From (2.9), we have
 ( S)( ,U) S( , U) S( ,U) S( , U)            

 S( , U) S( , U)     

   [2n{2 ( ) 2 ( )} ( )] (U)        

  (2n 1) U( ) ( U)( )       ,(3.4)

where (2.9) has been used. In view of (3.3)
and (3.4) we obtain from (3.2) that
 

2 2

dr( )[2n{2 ( ) 2 ( )} ( ) ] (U)
nD(U) (n 2)r(2n 1)[ ( )]

n(n 1)


        




     
 

  

 
2 2

(2n 1) U( ) ( U)( )
(n 2)r(2n 1)[ ( )]
n(n 1)

     


     
 

 2 2

2 2

(n 2)(2n 1)( ) (U) (2n 1)(U ) ( U) r (U)
n(n 1)D( )[ ](n 2)r(2n 1)[ ( )]

n(n 1)

           
  

     
 
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2 2 2 2

dr( )2n{2 ( ) 2 ( ) ( )}
n

r (n 2)r[2n{ ( )} ][(2n 1){ ( )} ]
n n(n 1)


       


           

 

      
 2 2 r[{2n( ) ( ) } (U) (2n 1)(U ) ( U) ].

n
           


                     (3.5)

Next, setting X=U= in (3.1) and proceeding in a similar manner as above, we get

 

2 2

dr( )[2n{2 ( ) 2 ( )} ( ) ] (Z)
nB(Z) (n 2)r(2n 1)[ ( )]

n(n 1)


        


     

 

         

 
2 2

(2n 1) Z( ) ( Z)( )
(n 2)r(2n 1)[ ( )]
n(n 1)

     


     
 

       

 2 2

2 2

(n 2)(2n 1)( ) (Z) (2n 1)(Z ) ( Z) r (Z)
n(n 1)B( )[ ](n 2)r(2n 1)[ ( )]

n(n 1)

          
  

     
 

        

 

2 2 2 2

dr( )2n{2 ( ) 2 ( ) ( )}
n

r (n 2)r[2n{ ( )} ][(2n 1){ ( )} ]
n n(n 1)


       


           

 

 
 2 2 r[{2n( ) ( ) } (Z) (2n 1)(Z ) ( Z) ]

n
           


 (3.6)

for any vector field Z. Hence we can state the following:

Theorem 3.2 In a weakly concircular symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), the associated 1-forms D and B are given by (3.5) and (3.6) respectively.
Again setting Z=U=, in (3.1), we get

 
X

dr(X)( S)( , )
n

   
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Now we have

   X X X( S)( , ) S( , ) 2S( , ),          
which yields by using (2.5) and (2.11) that
 X( S)( , ) 2n{2 (X ) 2 (X ) X( )}          

   2 [(X ) (X)( ) (2n 1)( X) ]        

   2 [( X) (2n 1){X ( ) (X)}]        
                                                                     (3.8)
In view of (3.5), (3.6) and (3.7), (3.8) yields for
any vector field,

 A(X) B(X) D(X) 

   

 
2 2

2n[2 (X ) 2 (X ) X( )]
r[2n( ( ) ) ]

n

      



    

  

 
2 2

2 [(X ) (X)( ) (2n 1)( X) ]
r[2n( ( ) ) ]

n

       



    

  

 

2 2

dr(X)2 [( X) (2n 1){X ( ) (X)}]
n

r[2n( ( ) ) ]
n

       


    

 r n 2A(X)[S( , ) ] [B( ) D( )][S(X, ) r (X)]
n n(n 1)
 

          
 

 rB(R(X, ) ) D(R(X, ) ) [B(X) D(X)]
n(n 1)


       


 2 2 r[2n{ ( )} ]A(X)
n


     

 2 2n 2[B( ) D( )][S(X, ) { r ( ) } (X)]
n(n 1)


          
 

 2 2 r[B(X) D(X)][ ( ) ]
n(n 1)


      
 . (3.7)

 

 

2 2

dr( )2[2n{2 ( ) 2 ( ) ( ) ] (X)
n

r[2n( ( ) ) ]
n

        


    

   

 
2 2

[(2n 1) X( ) ( X) ]
r[n( ( ) ) ]

2n

     



    

   

 

2 2 2

dr( )2[2n{2 ( ) 2 ( ) ( )} ]
n

r[2n( ( ) ) ]
n

 
       




    

    
 2 2 r[{2n( ) ( ) } (X) (2n 1)(X ) ( X) ]

n
           


        [{2n( ) ( ) } (X) (2n 1)(X ) ( X) ]              (3.10)

This leads to the following:

Theorem 3.3 In a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), the sum of the associated 1-forms is
given by (3.10).
      In particular, if (grad)=grad, then
()=0 and hence the relation(3.10) reduces
to the following form
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for any vector field X. This leads to the
following:

Corollary 3.4 If a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), satisfies the condition (grad) =grad,
then the sum of the associated 1-forms is given
by (3.11).

If =0 and =1, then (3.10) yields
A(X)+B(X)+D(X)=0 for all X and hence we
can state the following:

Corollary 3.5 There is no weakly
concircular symmetric -Sasakian manifold
(M2n+1,g) (n>1), unless the sum of the 1-forms
is everywhere zero.

Corollary 3.6 If an --Sasakian
manifold is weakly concircular symmetric, then
the sum of the 1-forms i.e., A+B+D is given
by
A(X)+B(X)+D(X)

 
2

2 [(2n 1)(X ) (X)( )] 2( X( ))
r2n

n

       



 

A(X) +B(X) +D(X)

        

 
2 2 2 2

2n[2 (X ) 2 (X )] 2 [(X ) (X)( ) (2n 1)( X) ]
r r2n( ) 2n( )

n n

            
 

 
     

      

 

2 2

dr(X) dr( )2 [( X) (2n 1)(X )] 2[4n ( ) ] (X) 2 ( X( ))
n n

r2n( )
n

               



  

      

 
2 2

2 2

dr( )2[4n ( ) ] rn [{2n( ) } (X) (2n 1)(X ) ( X) ]r n2n( )
n

   
          

    (3.11)

 

2

dr( )2[4 n( ) ] (X)
n
r2n

n

   



 

 2

2 2

dr( ) r2[4n ( ) ][{2n } (X) ( X) ]
n n

r(2n )
n

         



 

.

 
(3.12)

Again, if =0 and =1, then (3.10) yields
A(X)+B(X)+D(X)=0 for all X. This leads to
the following:

Corollary 3.6 There is no weakly
concircular symmetric -Kenmotsu manifold
(M2n+1,g) (n>1), unless the sum of the 1-forms
is everywhere zero.

Corollary 3.7 If a --Kenmotsu
manifold is weakly concircular symmetric, then
the sum of the 1-forms i.e., A+B+D is given
by
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A(X) +B(X) +D(X)  (3.13)

         

 

2

dr(X)2n{2 (X ) (X( ))} 2(2n 1) {(X ) ( ) (X)}
n

r2n{ ( ) }
n

           


   

        

 

2

dr( )2[{4n ( ) ( ) } (X) (2n 1) X( )]
n

r2n{ ( ) }
n


         




   

       

 2

2 2

dr( ) r2[2n{2 ( ) ( )} ][{2n ( ) } (X) (2n 1)(X )]
n n

r[2n{ ( ) } ]
n

             



   

.

4. Weakly Concircular Ricci symmetric
- Trans-Sasakian manifolds :

Definition 4.1. A - Trans-Sasakian
manifolds (M2n+1,g) (n>1), is said to be weakly
concircular Ricci symmetric if its concircular
Ricci tensor P of type (0,2) satisfies (1.9).
In view of (1.8), (1.9) yields
 

X
dr(X) r( S)(Y,Z) g(Y,Z) A(X)[S(Y,Z) g(Y,Z)]

n n
   

     
 rB(Y)[S(Y, Z) g(Y, Z)]

n
 

                 
 rD(Z)[S(X,Y) g(X,Y)]

n
  (4.1)

Setting X=Y=Z= in (4.1), we get the relation
(3.2) and hence we can state the following:

Theorem 4.1 In a weakly concircular
Ricci symmetric -Trans-Sasakian manifold
(M2n+1,g) (n>1), the relation (3.2) holds.
Next, substituting X and Y by  in (4.1), we
obtain
 dr( ) r( S)( ,Z) (Z) [A( ) B( )][S( , Z) (Z)]

n n


          
 

                
 rD(Z)[S( , ) ]

n


    .        (4.2)

Using (3.2) and (3.4) in (4.2), we get

 

2 2

dr( )[2n{2 ( ) 2 ( )} ( ) ] (Z)
nD(Z) r2n[ ( )]

n


        


    
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2 2

[(2n 1) Z( ) ( Z)( )]
r2n[ ( )]
n

     



    

       

 2 2

2 2

r{2n( ) ( ) } (Z) ( Z) (2n 1)(Z )
nD( )[ ]r2n[ ( )]

n

          
 

    

       

 

2 2 2

dr( )2n{2 ( ) 2 ( ) ( )}
n

r[2n( ( ) ]
n

        



    

  
 2 2 r[{2n( ) ( ) } (Z) (2n 1)(Z ) ( Z) ]

n
           


   (4.3)

for all Z.
Again putting X=Z= in (4.1) and proceeding in a similar manner as above we get

 

2 2

dr( )[2n{2 ( ) 2 ( )} ( ) ] (Y)
nB(Y) r2n[ ( )]

n

        



    

         

 
2 2

[(2n 1) Y( ) ( Y)( )]
r2n[ ( )]
n

     



    

          

 2 2

2 2

r{2n( ) ( ) } (Y) ( Y) (2n 1)(Y )
nB( )[ ]r2n[ ( )]

n

          
 


    

        

 

2 2 2

dr( )2n{2 ( ) 2 ( ) ( )}
n

r[2n( ( ) ]
n

        



    
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 2 2 r[{2n( ) ( ) } (Y) (2n 1)(Y ) ( Y) ]

n
           


  (4.4)

for all Y.
Again setting Y=Z= in (4.1) and using (2.9) and (2.11), we get

 2 2
X

dr(X) r( S)( , ) [2n( ( ) ) ]A(X)
n n

 
         

 2 2 r[B( ) D( )][{2n( ) ( ) } (X)
n

         


             ( X) (2n 1)(X )]     .                                          (4.5)
Using (3.2) and (3.8) in (4.5), we get

 
2 2

2n{2 (X ) 2 (X ) X( )}A(X) r2n( ( ) )
n

      



    

         

 
2 2

2 [(X ) (X)( ) (2n 1)( X) ]
r2n{ ( ) )

n

       



    

          

 

2 2

dr(X)2 [( X) (2n 1){X ( ) (X)}]
n

r2n( ( ) )
n

       



    

          

 2 2

2 2

r{2n( ) ( ) } (X) ( X) (2n 1)(X )
nA( )[ ]r2n( ( ) )

n

          
 


    

            

 

2 2 2

dr( )2n{2 ( ) 2 ( ) ( )}
n

r[2n( ( ) ) ]
n

        



    

               
 2 2 r[{2n( ) ( ) } (X) ( X) (2n 1)(X )]

n
          


    (4.6)
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for all X. This leads to the following:

Theorem 4.2 In a weakly concircular
Ricci symmetric -Trans-Sasakian manifold
(M2n+1, g) (n>1), the associated 1-forms D, B
and A are given by (4.3), (4.4) and (4.6)
respectively.
Adding (4.3), (4.4) and (4.6) and using (3.2)
we get the relation (3.10) and hence we can
state the following:

Theorem 4.3 In a weakly concircular
Ricci symmetric -Trans-Sasakian manifold
(M2n+1, g) (n>1), the sum of the associated
1-forms is given by (3.10).

Corollary 4.4 If a weakly concircular
Ricci symmetric -Trans-Sasakian manifold
(M2n+1, g) (n>1), satisfies the condition
(grad)=grad, then the sum of the associated
1-forms is given by (3.11).

If =0 and =1, then (3.10) yields
A(X)+B(X)+D(X)=0 for all X and hence we
can state the following:

Corollary 4.5 There is no weakly
concircular Ricci symmetric -Sasakian
manifold (M2n+1, g) (n>1), unless the sum of
the 1-forms is everywhere zero.

Corollary 4.6 If an --Sasakian
manifold is weakly concircular Ricci symmetric,
then the sum of the 1-forms i.e., A+B+D is
given by (3.12).
Again, if =0 and =1, then (3.10) yields
A(X)+B(X)+D(X)=0 for all X. This leads to
the following:

Corollary 4.6 There is no weakly

concircular Ricci symmetric -Kenmotsu
manifold (M2n+1, g) (n>1), unless the sum of
the 1-forms is everywhere zero.

Corollary 4.7 If a --Kenmotsu
manifold is  weakly concircular Ricci
symmetric, then the sum of the 1-forms i.e.,
A+B+D is given by (3.13).

Special cases of Weakly Symmetric
Concircular -Trans-Sasakian manifolds
5. Locally Symmetric and Recurrent spaces:

In this section, we consider the locally
symmetric spaces in the sense of E. Carton.

Definition 5.1 A weakly concircular
-Trans-Sasakian manifold (M2n+1, g) (n>1),
is said to be Locally symmetric if its concircular

curvature tensor   C , of  type (0, 4) is not identically
zero and satisfies the condition

 
X( C)(Y, Z, U,V) 0  .

Suppose weakly concircular -Trans-Sasakian
manifold (M2n+1, g) (n>1), is locally symmetric.

Then  C 0   so that from (1.5), we have

 0 A(X)C(Y, Z, U, V) B(Y)C(X, Z, U, V)  

   B(Z)C(Y,X, U,V) D(U)C(Y, Z,X,V)  

      D(V)C(Y, Z, U,X)   , (5.1)

where X,Y, Z, U and V are vector fields on M.

Let  i{e : i 1,2,.........,2n 1}   be the ortho-
normal basis of the tangent space TpM at any
point p of the manifold. Then setting Y=V=ei

in (5.1) and taking summation over i, 1i2n+1,
we get
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 r r0 A(X)[S(Z, U) g(Z, U)] B(Z)[S(X, U) g(X, U)]
n n

   

 rD(U)[S(X, Z) g(X, Z)] B(R(X, Z)U) D(R(X, U)Z)
n

   

 r [{B(X) D(X)}g(Z, U) B(Z)g(X, U) D(U)g(Z,X)]
n(n 1)

   
  (5.2)

Putting X=Z=U= in (5.2) and then using (2.7)
and (2.11), we obtain
            A( ) B( ) D( ) 0          (5.3)
Hence we can state the following:

Lemma 5.1 In a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1, g)
(n>1), is locally symmetric the relation (5.3)
holds.
Next, substituting X and Z by  in (5.2) and

then using (2.7)  and (2.12) we obtain

0
 r[A( ) B( )][S(U, ) (U)]

n
      



    
 2 2 (n 2)rD(U)[(2n 1){ ( )} ]

n(n 1)


      
 

    
 2 2 r[ ( ) ] (U)D( )

n(n 1)
       

  .
(5.4)

Further using (5.3) in (5.4) we get

 2 2

2 2

(n 2)(2n 1)( ) (U) (2n 1)(U ) ( U) r (U)
n(n 1)D(U) D( )[ ](n 2)r(2n 1)[ ( )]

n(n 1)


           

  


     
 

(5.5)

for any vector field U.
Similarly putting X=U= in (5.2) and proceeding in a similar manner as above, we get

 2 2

2 2

(n 2)(2n 1)( ) (Z) (2n 1)(Z ) ( Z) r (Z)
n(n 1)B(Z) B( )[ ](n 2)r(2n 1)[ ( )]

n(n 1)

           
  

     
 

  (5.6)

for any vector field Z. Hence we can state the following:

Theorem 5.2 If a weakly concircular symmetric -Trans-Sasakian manifold (M2+1, g)
(n>1), is locally symmetric, then the associated 1-forms D and B are given by (5.5) and (5.6)
respectively.
Now from (5.5) and (5.6), forming B(X)-D(X), we have
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 2 2

2 2

( ( ) ) (X){D( ) B( )}B(X) D(X) (n 2)r(2n 1)[ ( ) ]
n(n 1)

       
 

     
 

 (5.7)

Nest replacing X by (X) in (5.7), we get
 B( (X)) D( (X)) 0   

Hence we state

Theorem 5.3 If a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), is locally symmetric, then

 B D 0   

Theorem 5.4 If a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)

(n>1), with B () =D () is locally symmetric,
then the associated 1-forms B and D are in
the same directions.

Proof. Follows from (5.7).

Corollary 5.5 If a weakly concircular
symmetric -Sasakian manifold (M2n+1,g)
(n>1), with B () =D () is locally symmetric,
then the associated 1-forms B and D are in
the same directions.
Again setting Z=U=, in (5.2), we get

0
 r n 2A(X)[S( , ) ] [B( ) D( )][S(X, ) r (X)]

n n(n 1)
 

          
 

 rB(R(X, ) ) D(R(X, ) ) [B(X) D(X)]
n(n 1)


       


 2 2 r[2n{ ( )} ]A(X)
n


     

 2 2n 2[B( ) D( )][S(X, ) { r ( ) } (X)]
n(n 1)


          
 

 2 2 r[B(X) D(X)][ ( ) ]
n(n 1)


      
 .                             (5.8)

Adding (5.5), (5.6) taking U=Z=X and then
using in (5.8), after simplification, we get

 A(X) B(X) D(X) 0    (5.9)

for any vector field X on M and 
 2 2[2n( ( ) ) ] 0     

2 2 r[2n( ( ) ) ] 0
n


      . Further (5.9) can be

written as A+B+D=0. Hence we can state

Theorem 5.6 If a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1, g)
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(n>1), is locally symmetric, then the sum of
the associated 1-forms A, B and D is zero
everywhere.

Corollary 5.7 If a weakly concircular
symmetric -Sasakian manifold (M2n+1,g)
(n>1), is locally symmetric, then the sum of
the associated 1-forms A, B and D is zero
everywhere.

Corollary 5.8 If a weakly concircular
symmetric -Kenmotsu manifold (M2n+1,g)
(n>1), is locally symmetric, then the sum of
the associated 1-forms A, B and D is zero
everywhere.

Definition 5.10 A weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), is is said to be recurrent if its concircular
curvature tensor  C , of  type (0,4) is not
identically zero and satisfies the condition
 X( C)(Y,Z, U,V) A(X)C(Y,Z, U,V)   (5.10)
where A is associated 1-form and X, Y, Z, U,
V are any vector field on M.
Suppose M is Recurrent, then from (1.5) and
(5.10), we have
 0 B(Y)C(X, Z, U, V) B(Z)C(Y,X, U, V)  

     D(U)C(Y, Z, X,V) D(V)C(Y, Z, U,X)  

                                                              (5.11)
Setting Y=V=ei in (5.11), and taking summation
over i, 1i2n+1, we get

 r0 B(Z)[S(X, U) g(X, U)]
n

 

   
 rD(U)[S(X, Z) g(X, Z)] B(R(X, Z)U) D(R(X, U)Z)

n
   

D(U)[S(X, Z) g(X, Z)] B(R(X, Z)U) D(R(X, U)Z)   

    
 r [{B(X) D(X)}g(Z, U) B(Z)g(X, U) D(U)g(Z,X)]

n(n 1)
   



     [{B(X) D(X)}g(Z, U) B(Z)g(X, U) D(U)g(Z,X)]      (5.12)
Putting X=Z=U= in (5.12) and then using
(2.7) and (2.11), we obtain
 B( ) D( ) 0     (5.13)
Now setting X = Z =  in (5.12) and then using
(2.7) and (2.12) we obtain

0
 r[B( )][S(U, ) (U)]

n
    



   
 2 2 (n 2)rD(U)[(2n 1){ ( )} ]

n(n 1)


      
 

    
 2 2 r[ ( ) ] (U)D( )

n(n 1)
       

  .

 (5.14)

By virtue of (5.13), and solving for D (U), we
get same equation (5.5). Similarly for (5.6) and
(5.7). Thus we obtain the same conclusions
as in the Theorem 5.3 and 5.4 and the corollary
there under if the ‘Locally symmetric’ is
replaced by ‘Recurrent’ in the statements.

Special cases of Weakly Ricci Symmetric
Concircular -Trans-Sasakian manifolds
6. Locally Ricci Symmetric and Ricci
Recurrent Spaces :

Definition 6.1 A weakly concircular
-Trans-Sasakian manifold (M2n+1,g) (n>1), is
said to be Locally Ricci symmetric if its
concircular curvature tensor P, of type (0, 2)
is not identically zero and satisfies the condition

 X( P)(Y, Z) 0  .
Suppose M is locally Ricci symmetric. Then
P=0. Therefore from (1.9), we have
 0 A(X)P(Y,Z) B(Y)P(X, Z) D(Z)P(Y,X)  
                                                      (6.1)
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where A, B and D are three 1-forms.
In view of (1.8), (1.9) yields

 r0 A(X)[S(Y, Z) g(Y, Z)]
n

 

      
 rB(Y)[S(Y, Z) g(Y, Z)]

n
 

       
 rD(Z)[S(X, Y) g(X, Y)]

n
        (6.2)

Setting X=Y=Z= in (6.2), we get

    A( ) B( ) D( ) 0       (6.3)
Next, substituting X and Y by  in (6.2), we
obtain

 r0 [A( ) B( )][S( , Z) (Z)]
n

      


      
 rD(Z)[S( , ) ]

n


    .                  (6.4)

Using (6.3) in (6.4), we get

 2 2

2 2

r{2n( ) ( ) } (Z) ( Z) (2n 1)(Z )
nD(Z) D( )[ ]r2n[ ( )]

n

          
 


    

            (6.5)

for any Z.
Similarly, we have

 2 2

2 2

r{2n( ) ( ) } (Y) ( Y) (2n 1)(Y )
nB(Y) B( )[ ]r2n[ ( )]

n

          
 


    

(6.6)

and

 2 2

2 2

r{2n( ) ( ) } (X) ( X) (2n 1)(X )
nA(X) A( )[ ]r2n( ( ) )

n

          
 


    

(6.7)

Now taking Y=Z=X in(6.5) and (6.6) and then
adding (6.5), (6.6) and (6.7) using (6.3) after
simplification, we get
  A(X) B(X) D(X) 0     (6.8)
for any vector field X on M and

 2 2 r[2n( ( ) ) ] 0
n


      .  Fur ther

(6.8) can be written as A+B+D=0. Hence we

can state

Theorem 6.2 If a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), is locally Ricci symmetric, then the sum
of the associated 1-forms A, B and D is zero
everywhere.

Corollary 6.3 If a weakly concircular
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symmetric -Sasakian manifold (M2n+1,g)
(n>1), is locally Ricci symmetric, then the sum
of the associated 1-forms A, B and D is zero
everywhere.

Corollary 6.4 If a weakly concircular
symmetric -Kenmotsu manifold (M2n+1,g)
(n>1), is locally Ricci symmetric, then the sum
of the associated 1-forms A, B and D is zero
everywhere.

Definition 6.5 A weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), is is said to be Ricci recurrent if its
concircular curvature tensor P, of type (0, 2)
is not identically zero and satisfies the condition

 X( P)(Y, Z) A(X)P(Y, Z)  .
Suppose M is locally Ricci symmetric. Then
from (1.9), we have
 0 B(Y)P(X, Z) D(Z)P(Y, X)   (6.9)
where A, B and D are three 1-forms.
In view of (1.8), (1.9) yields

          
 r0 B(Y)[S(Y, Z) g(Y, Z)]

n
 

       
 rD(Z)[S(X, Y) g(X, Y)]

n
   (6.10)

Setting X=Y=Z= in (6.10), we get
 B( ) D( ) 0     (6.11)

Next, substituting X and Y by  in (6.10), we
obtain

 r0 [B( )][S( , Z) (Z)]
n

    


     
 rD(Z)[S( , ) ]

n


    .      (6.12)

Using (6.11) in (6.12), and solving for D (Z),
we get same equation (6.5). Similarly for (6.6).

Next adding (6.5) and (6.6) taking Y=Z=X and
using (6.11) we get

B(X)+D(X)=0.
Hence we state

Theorem 6.6 If a weakly concircular
symmetric -Trans-Sasakian manifold (M2n+1,g)
(n>1), is locally Ricci recurrent, then the
associated 1-forms B and D are in the opposite
directions.

Corollary 6.7 If a weakly concircular
symmetric -Sasakian manifold(M2n+1,g)
(n>1), is locally Ricci recurrent, then the
associated 1-forms B and D are in the opposite
directions.

Corollary 6.8 If a weakly concircular
symmetric -Kenmotsu manifold(M2n+1,g)
(n>1), is locally Ricci recurrent, then the
associated 1-forms B and D are in the opposite
directions.

       Example: Let us consider a 3-dimensional
manifold M={(x, y, z) : z0}, where (x, y, z)
are the standard coordinates in R3.

Let 
 z z

1 2 3e e ( y ),e e ,e ,
x z y z
   

   
   

which are linearly independent vector fields
at each point of M. define a semi-Riemannian
metric g on M as
 1 3 2 3 1 2 1 1 2 2 3 3g(e ,e ) g(e ,e ) g(e ,e ) 0,g(e ,e ) g(e ,e ) g(e ,e )     

1 3 2 3 1 2 1 1 2 2 3 3g(e ,e ) g(e ,e ) g(e ,e ) 0,g(e ,e ) g(e ,e ) g(e ,e )     ,
where =±1.
Let  be the 1-form defined by  3(Z) g(Z,e )  ,
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for any Z(TM) and  be the tensor field of

type (1, 1) defined by  1 2 2 1 3e e , e e , e 0      

1 2 2 1 3e e , e e , e 0       . Then by applying linearity of  and
g, we have
 2

3 3(e ) 1, Z Z (Z)e ,g( Z, U) g(Z, U) (Z) (U),           

(e ) 1, Z Z (Z)e ,g( Z, U) g(Z, U) (Z) (U),           

for any Z,U(TM). Hence for  3e   , (,

, , g, ) defines an - almost contact metric
structure on M.
Let  be the Levi-Civita connection with
respect to g and R be the curvature tensor of
type (1, 3), then we have
 z 2z

1 2 2 3 1 3 1 2 3 2[e ,e ] (ye e e e ),[e ,e ] e ,[e ,e ] e .     

1 2 2 3 1 3 1 2 3 2[e ,e ] (ye e e e ),[e ,e ] e ,[e ,e ] e .     
By using Koszul’s formula for the Levi-Civita
connection with respect to g, we obtain

        
 

1 2 3
2z 2z

e 3 1 2 e 3 2 1 e 3
1 1e e e e , e e e e , e 0
2 2

            ,

       
 

1 2 3
2z z 2z

e 2 3 e 2 3 1 e 2 1
1 1e e e , e e ye e , e e e ,
2 2

          

      
 

1 2 3
z 2z 2z

e 1 3 e 1 2 3 e 1 2
1 1e e , e ye e e e , e e e .
2 2

         

Now, for e3=, above results satisfy
 X { X (X (X) )},      

with  2z1 e
2

   and =-1. Consequently M(, , , g, ) is a 3-dimensional  -Trans-Sasakian

manifold10.
Using the above relations, we can easily calculate the non-vanishing components of

the curvature tensor as follows:

      
 4z 2 2z 4z 2 2z

1 2 2 1 1 2 1 2
3 3R(e ,e )e (1 e y e )e , R(e ,e )e (1 e y e )e
4 4

      

      
 2z 4z 2z 4z

2 3 3 1 2 1 3 3 2 1
1 1R(e ,e )e e e ( e 1)e , R(e ,e )e e e ( e 1)e ,
4 4

      

      
 2z 4z

1 3 2 3 1 3 1 3
1R(e ,e )e e e ,R(e ,e )e (1 e )e ,
4

    

     
 z 4z 4z

2 3 2 1 3 3 1 1 3
1 1R(e ,e )e ye e (1 e )e , R(e ,e )e (1 e )e ,
4 4

    

       2z z
3 2 1 3 2R(e ,e )e e e ye e .  
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and the components which can be obtained from these by the symmetry properties.
         Using the components of the curvature tensor, we can easily calculate the non –vanishing
components of the Ricci tensor S and its covariant derivatives as follows:
 4z 2 2z 4z 2 2z 4z

1 1 2 2 3 3
1 1 1S(e , e ) ( e y e ),S(e , e ) ( 2 e y e ),S(e , e ) ( e 2)
2 2 2

        

 
1 1 1

4z 2 2z 4z
e 1 3 e 1 1 e 2 2

1 1S(e ,e ) ( e y e ) (2 e ), S(e ,e ) S(e ,e ) 0,
2 2

         

 
1 1 2

6z 2 4z
e 2 3 e 1 2 e 2 2

1S(e ,e ) (e y e ), S(e ,e ) S(e ,e ) 0,
2

      

 
2 2 3

2z 6z 2 4z
e 1 3 e 3 3 e 1 1

1S(e ,e ) e (e y e ), S(e ,e ) S(e ,e ) 0
2

        ,

 
2 2 3

4z 2 2z
e 2 3 e 1 1 e 2 2S(e ,e ) (e y e ), S(e ,e ) S(e ,e ) 0,       

 
3 3 3

2z
e 1 2 e 1 3 e 2 3S(e ,e ) e , S(e ,e ) S(e ,e ) 0      .

Since  1 2 3{e ,e ,e }  is an orthonormal basis of (M3,g), any vector X and Y can be written as

 1 1 2 2 3 3 1 1 2 2 3 3X a e a e a e , Y b e b e b e ,     

Where  i ia , b (i 1, 2,3)  are positive real numbers. Now

           

1 1 1 1 2 2 2 2 3 3 3 3S(X,Y) a b S(e ,e ) a b S(e ,e ) a b S(e ,e )    
                             1 2 2 1 1 2 1 3 3 1 1 3(a b a b )S(e ,e ) (a b a b )S(e ,e )     
                             2 3 3 2 2 3(a b a b )S(e ,e )   

                          4z 2 2z 4z 2 2z
1 1 2 2

1 1a b ( e y e ) a b (2 e y e )
2 2

       

                            4z
3 3

1a b ( e 2)
2

   

from (1.8) we get

 rP(X, Y) S(X, Y) g(X, Y)
3

 

 4z 2 2z 4z 2 2z
1 1 2 2

1 1a b ( e y e ) a b (2 e y e )
2 2

     
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 4z

3 3 1 1 2 2 3 3 1
1 ra b ( e 2) (a b a b a b )
2 3

       , say..

We choose  i ia , b (i 1,2,3)  in such way that P(X, Y) = 1 0  . The covariant derivatives of
the Ricci tensor S(X, Y) are given by
 

1 1 1 1e 1 1 e 1 1 2 2 e 2 2 3 3 e 3 3S(X,Y) a b S(e ,e ) a b S(e ,e ) a b S(e ,e )      

 
1 11 2 2 1 e 1 2 1 3 3 1 e 1 3(a b a b ) S(e ,e ) (a b a b ) S(e ,e )     

 
12 3 3 2 e 2 3(a b a b ) S(e ,e )  

 4z 4z 2 2z
1 3 3 1

1 1(a b a a ){ (2 e ) ( e y e )}
2 2

     

 6z 2 4z
2 3 3 2

1 (a b a b )(e y e )
2

  

 
1 1 1e e e

rP(X, Y) S(X, Y) [ g(X,Y)]
3

   

 4z 4z 2 2z
1 3 3 1

1 1(a b a a ){ (2 e ) ( e y e )}
2 2

     

 
1e6z 2 4z

2 3 3 2 1 1 2 2 3 3
[ (r)]1 (a b a b )(e y e ) (a b a b a b )

2 3


      

 2  , say..
 

2
z 2z 6z 2 4z

e 1 2 2 1 1 3 3 1
1P(X,Y) (a b a b )(2ye ) (a b a b )[e (e y e )]
2

       

 
2e4z 2 2z

2 3 3 2 1 1 2 2 3 3 3
[ (r)]

(a b a b )(e y e ) (a b a b a b )
3


        , say..

 
3

3
e2z

e 1 2 2 1 1 1 2 2 3 3 4
[ (r)]

P(X,Y) (a b a b )(e ) (a b a b a b )
3


        , say..

Using (1.9), we get
 

1e 1 1 1P(X,Y) A(e )P(X,Y) B(X)P(e ,Y) D(Y)P(X,e )     (6.13)

 
2e 2 2 2P(X,Y) A(e )P(X,Y) B(X)P(e ,Y) D(Y)P(X,e )     (6.14)

 
3e 3 3 3P(X,Y) A(e )P(X,Y) B(X)P(e ,Y) D(Y)P(X,e )     (6.15)
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Setting,

 32 4
1 2 3

1 1 1
A(e ) , A(e ) , A(e ) 

  
   ,

(6.16)
from (6.13),(6.14) and (6.15) it is easy to see
that,

 1 1B(X)P(e , Y) D(Y)P(X,e ) 0   (6.17)

 2 2B(X)P(e , Y) D(Y)P(X,e ) 0   (6.18)

 3 3B(X)P(e ,Y) D(Y)P(X,e ) 0   (6.19)

From these homogeneous equations in B and
C, one obtains non trivial solutions

 1 1B(e ) D(e ) 

Hence we can take arbitrarily as,

 4z 4z
1 2 3 3 2 1 3 2 2 3B(e ) (a b a b )e , D(e ) (a b a b )e   

4z 4z
1 2 3 3 2 1 3 2 2 3B(e ) (a b a b )e , D(e ) (a b a b )e     (6.20)

Also from (6.17),(6.18) and (6.19), we find

 2 2 3 3B(e ) 0, D(e ) 0,B(e ) 0,D(e ) 0,   
                                                              (6.21)

The 1-form given by (6.16),(6.20) and
(6.21), the manifold under consideration is a
weakly Concircular Ricci symmetric - Trans-
Sasakian manifold. This leads to the following:

Theorem 6.8: There exists a - Trans-
Sasakian manifold which is weakly concircular
Ricci symmetric but neither Ricci symmetric
nor Ricci-recurrent.
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