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Abstract

An attempt has been made to study the effect of Yule’s process

on the Power of x -chart. Process measurements which are use in

construction of x -chart involve several of errors. These include the
inherent variability in the process and the error due to Yule’s process.
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1 Introduction

A basic assumption made in most
traditional applications of control charts is that
the observations from the process are indepen-
dent. When the mean of observations is being
monitored, the mean is assumed to be constant
at the target value until a special cause occurs
and produces a change in the mean. However,
for many processes, such as in the chemical
and process industries, there may be correlation
between observations that are closely spaced in
time. Correlation which is not a significant problem
for an FSI chart may become problematic for
a VSI chart because some of the observations
will be taken using a relatively short sampling
interval. The effect of correlated observations
on the performance of FSI control charts has
been studied by several authors.

Goldsmith and Whitfield3; Johnson and
Bagshaw5; Bagshaw and Johnson1; Harris and
Ross4; Yashchin8 and VanBrackle and Reynolds7

investigated the effects of correlation obser-
vation on CUSUM charts. Harris and Ross4

and VanBrackle and Reynolds7 also investigated
the effects on EWMA charts. Vasilopoulos and
Stamboulis (1978); Maragah and Woodall
(1992) and Padgett et al. (1992) investigated
 x  charts with correlated observations, where
the control limits are estimated from the data6.

The decision - making method is the
same for both the first and second steps: if the
points fall outside the corresponding control
limits, the null hypothesis is rejected. Rejection
of at least one of the simple null hypothesis
leads to rejection of the general null hypothesis.
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Thus, a positive decision as to whether a
sampling point belongs to the universe is based
on the logical and of the simple null hypothesis,
 2

0
2   and  0 . To determine whether

the process mean is at the standard value, the
control chart for averages ( x ) is most widely
used, while charts based on either the sample
range R or the sample standard deviation S
are used to monitor process variability. A basic
assumption made in most traditional applications
of control charts is that the observations from
the process are independent.

In some situations in which there is
correlation between the observations, it may
not be very realistic to assume that the process
mean is constant until a special cause occurs.
It may be more realistic to assume that the
process mean is continually wandering even
though no special cause can be identified. For
some situations of this type, the objective of
process monitoring may be the application of
some kind of engineering feedback control
method in addition to the detection of special
causes (see, e.g., Macgregor (1990)). This
paper, however, will not consider feedback
control problems, but will concentrate on the
detection of special causes in a process which
is continually wandering about an overall mean.
It is assumed that a special cause produces a
shift in the overall mean.

In this paper an attempt has been
made to study the effect of Yule’s process on
the Power of  x -chart. Process measurements
which are use in construction of x -chart
involve several of errors. These include the
inherent variability in the process and the error
due to Yule’s process.

2 Model Description :

For processes in which there is
correlation between observations, a more
reasonable model may be

  ttx   t= 1,2,...n,   (2.1)
where  is the mean at time t. The

assumption here is that the mean is not a fixed
constant but rather continually wanders over
time. As in  the Durbin and Watson2 d-statistic
can be used to detect the presence or absence
of serial correlation. The problem, however, is
what to do once the suspicion of dependence
via the auto/correlation test is confirmed. If
autocorrelation exist we use identification

techniques to define the nature of  t . When
identification is complete, the likelihood
function can provide maximum likelihood
estimate of the parameters of the identified
model.

Suppose that a correlation test revealed
the presence of data dependence and the
identification technique suggested autoregressive
model of order two (i.e. AR-2) or Yule’s model,

then we can express  t  of equation (2.1) as

 t2t21t1t   ,  t=1,2,...,n (2.2)
where
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For stationarity, the roots of the
characteristic equation of the process
 0BB1)B( 2
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must lie outside the unit circle, which
implies that the parameters 1 and 2 must lie
in the triangular region, i.e.,

 1,1and1,1 21212 

Using  0)( kB  and Yule’s process
has an autocorrelation function given by the
second order difference equation

 2211   kkk   (2.5)

     The variance of Yule’s process is given by
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Now if  1
1G  and  1

2G  are the roots

of the characteristic equation of the process
given by equation (2.4) then
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For stationary we require that  1Gi  .
Thus, three situations can theoretically arise :

(i) Roots G1 and G2 are real and distinct

(i.e.  )04 2
2
1 

(ii) Roots G1 and G2  are  real and equal (i.e.,
 )04 2

2
1 

(iii) Roots G1  and G2  are complex  conjugate

(i.e.,  )04 2
2
1 

When the correlation is present in the
data, we have for the distribution of the sample
mean  x , its mean and variance given by
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       Where  )n,,(T 21ap
2   depends

on the nature of the roots G1 and G2 and for
different situations is given as follows :

(i) If  G1 and G2 are real and distinct,
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    =  )n,,( 21rd  ,   (2.10)

where 
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(ii) If G1 and G2 are real and equal
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3 Power of  x -chart for Yule’s process :

In this development it is assumed that
the process has a normal distribution with

mean  and variance  2 . It is assumed that
at the time of determining the control limits
the process is in a state of statistical control,

1
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(iii) If G1 and G2 are complex conjugate
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and the same device is used as will be employed
for later measurements. Thus, the data used
for establishing the limits on the control charts

comes from a process that is N ),( 2 .
When the process shifts, the data is assumed
to come from an N( )T,' 22  population
with Yule’s process. If the samples of size n
are taken from the population N( )T,' 22  and
the value of  x  is plotted with control limits of
 ,n/3 2  the power of detecting the
change of process is given by the following
formula :
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    n/3xPn/3xPP 2
r

2
rx  (3.1)

Converting to a standard normal distribution we have
 n/T/)'x(Z 22 (3.2)

Using the new variable, equation (3.1) can be expressed :
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4 Numerical Illustration and Results

For the purpose of illustrating the
effect of Yule’s process, we have determined
the values of power function P x  for three
different situations of the root from the
equation (2.10), (2.11) and (2.12). The values
of power function have been calculated and
the results presented in Table 1 and Table 2
for n=5 and 7. For three different situations
(i.e. (i) roots are read and distinct (ii) roots
are real and equal and (iii) roots are complex
conjugate). In order to give visual comparison
of the power functions for three different

situation and independent case, a curves have
been drawn and shown in Fig. 1 and Fig. 2,
which illustrates the relationship between the
change of the process average d and the power
of detecting this change P x  when n=5 and 7.
The power depends on the magnitude of the
process change and three different situations
of the roots with independent observation.
When the roots are complex conjugate the
power curves are approximately same as the
observations are independent. The use of larger
n will result in improvement for power function.
The functions are seriously affected when the
roots are real and distinct, real and equal. If a
process generates data that are inherently
Yule’s process, due to natural process
dynamics, power function should be used to
monitor any engineering control system that
has establish to minimize process variation
about a mean target.
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Table 2.1 : Value of Power Function for Yule's Model and n = 5

d T2(0,0,5) T2(0.8,-0.6,5) T2(0.3, 0.6,5) T2(0.8,-0.16, 5)

0.1
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0.0036
0.0311
0.2238
0.6368
0.9292
0.9952
0.9998
0.9999
0.9999
1.0000
1.0000

0.0041
0.0330
0.2298
0.6330
0.9250
0.9942
0.9998
0.9999
0.9999
1.0000
1.0000

0.1386
0.1964
0.3990
0.5682
0.7674
0.9015
0.9672
0.9919
0.9985
0.9998
0.9999

0.0754
0.1382
0.3273
0.5832
0.8106
0.9395
0.9868
0.9980
0.9998
0.9999
0.9999

Table 2.2: Value of Power Function for Yule's Model and n = 7

d
0.1
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

T2(0,0,7)
0.0038
0.0476
0.3633
0.8314
0.9889
0.9998
0.9999
1.0000
1.0000
1.0000
1.0000

T2(0.8,-0.6,7)
0.0071
0.0607
0.3746
0.8132
0.9829
0.9995
0.9999
0.9999
1.0000
1.0000
1.0000

T2(0.3, 0.6,7)
0.2019
0.2673
0.4482
0.6604
0.8366
0.9395
0.983

0.9965
0.9995
0.9999
0.9999

T2(0.8,-0.16, 7)
0.0928
0.1783
0.4215
0.7089
0.9032
0.9799
0.9974
0.9998
0.9999
0.9999
0.9999
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The traditional control charts should not be
applied without modification to Yule’s process.
An appropriate application of power function
in this case is to monitor the engineering
control system applying traditional techniques
to the residual or deviation from target. In
practical situations, however, the case of real
and equal roots hardly arises. Moreover, this
is too simple a case for calculations and
included only for the sake of completion. The
power curves looks different for other

gradients and there are cases where the
traditional approach is more powerful.
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