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Abstract

In this paper, additional topological characterizations of finite
sets are given using closed images and separation axioms.
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Introduction

1. Within a 2007 introductory graduate
level topology class, the students were asked
to prove or disprove the open image of a T0 space
is T0. The students believed the statement to
be false, but unsuccessfully searched for a
counterexample. For each unsuccessful
search  the students used a topological space
(X,T) for which X was finite, thus generating
the question: “If, in fact, the open image of a
T0 space need not be T0, is the open image of
a T0 space (X,T), where X is finite,  T0?” The
investigation of this question has led to many
topological characterizations of finite sets using
open images and separation axioms1. If open
images and separation axioms could be used
to provide topological characterizations of finite
sets, what about closed images and separation
axioms? In this paper, this last question is
investigated and resolved.

 All spaces in this paper are topological spaces.

2. Closed Images and T0 Spaces.

Definition 2.1. A function f from a
space (X,T) into a space (Y,S) is closed (open)
iff for each closed (open) set A in X, f(A) is
closed (open) in Y3.

Definition 2.2. A space (X,T) is T0

iff for distinct elements x and y in X, there
exits an open set in X containing only one of x
and y3.

In the proof below, the following
characterization of T0 spaces will be used.

Theorem 2.1. A space (X,T) is T0 iff
for distinct elements xi, i = 1, ---, n, where n is
a natural number, there exists a closed set C
in X containing only one of the n distinct
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elements2.

Theorem 2.2. Let X be a nonempty
set. Then (a) X is finite iff (b) for each T0

topology on X, each closed image of (X,T) is
T0.

Proof: (a) implies (b): Let T be a T0

topology on X and let f be a closed function
from (X,T) onto a space (Y,S). Let u and v be
distinct elements of Y and F be all elements in
X whose image is u or v. Since X is finite, F is
finite. Let C be a closed set in X containing
only one of the distinct elements of F. Then
f(C) is closed in Y containing only one of u
and v and Y\ (f(C)) is open in Y containing
only one of u and v.

(b) implies (a): Suppose X is infinite.
Let x be in X. Then Z = X\ {x} is infinite and
there exists a one-to-one function f from N,
the natural numbers, into Z. Let U be the
rational numbers in (0,1), which is countable,
and let g be a one-to-one function from U onto
N. For each r in U, let xr = f(g(r)). For each u
in X\ f(g(U)), let Bu = {{u}}. Let xr be in
f(g(U)), let Lr = {a : a is in U, 0 < a < ½, and a
< r }, let Rr = {b: b is in U, ½ < b< 1, and r <
b}, and Br = {f(g((a,b))): a is in Lr and b is in
Rr}. Then the union of {Bu: u is in X\ f(g(U))}
and {Br: r is in U} is a base for a T0 topology
T on X. Let E = {2n/p: n is in N, p is prime,
and 2n/p < 1} and let F = U\ E. Let Y = {c, d, e},
let S = {Ø, Y, {c, d}, {e}}, and let h be the
function from (X,T) onto (Y,S) defined by  h(v)
= e if v is in X\ f(g(U)), h( v) = c if v is in
f(g(E)), and h(v) = d if v is in f(g(F)). Since E
and F are dense in U1, then h is closed and open,
but (Y,S) is not T0, which is a contradiction.

Hence X is finite.

3. Closed Images and T1 Spaces.

In earlier characterizations of finite
sets, it was proven that for a nonempty set X
the following are equivalent: (a) X is finite, (b)
for each T1 topology T on X, each open image
of (X,T) is T1, and (c) there is exactly one
topology T on X for which (X,T) is T1

1.
 

As established in the next result,
closed images of T1 spaces behave differently
from open images of T1 spaces.

Theorem 3.1. Let (X,T) be a space.
Then (X,T) is T1 iff every closed image of
(X,T) is T1.

Proof: Suppose (X,T) is T1. Let f be
a closed function from (X,T) onto a space
(Y,S). Since (X,T) is T1, then singleton sets
are closed in X and since f is closed and onto,
singleton sets are closed in (Y,S). Thus (Y,S)
is T1.

Conversely, suppose every closed
image of (X,T) is T1. Since the identity function
on (X,T) is closed and onto, then (X,T) is T1.

Even though closed images of T1

spaces behave differently than open images
of T1 spaces, closed images of T1 spaces are
used below to further characterize finite sets.

Theorem 3.2. Let X be a nonempty
set. Then the following are equivalent: (a) X
is finite, (b) for each T1 topology T on X, for
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each closed image (Y,S) of (X,T), (Y,S) is T1

with  S= P(Y), the power set of Y, and (c) for
each topology T on X for which (X,T) is T1,
each function f from (X,T) onto (Y,S) is closed
iff it is open.

Proof: (a) implies (b): Let T be a T1

topology on X. Let (Y,S) be a closed image of
(X,T). By Theorem 3.1, (Y,S) is T1 and since f
is a function from the finite set X onto the set
Y, Y is finite. Thus (Y,S) is finite, T1, which
implies S = P(Y).

(b) implies (c): Let T be a T1 topology
on X. Since the identity function from (X,T)
onto itself is closed, then T = P(X). Thus there
is exactly one topology on X for which (X,T)
is T1, which implies X is finite. Since (X,T) is
finite and T = P(X), then the family of closed
sets of (X,T), C(T), equals T. Let f be a
function from (X,T) onto (Y,S). Since X is
finite, then Y is finite. If f is closed, then Y is
finite and S = P(Y), which implies C(Y) = S,
and for each O in T, O is in C(T), f(O) is closed
(Y,S), which is open in (Y,S), and f is open. If
f is open, then Y is finite and (Y,S) is T1, which
implies C(Y) = S and for each closed set C in
X, C is open in X, f(C) is open in Y, which is
closed in Y, and f is closed.

(c) implies (a): Suppose X is infinite.
Let f be a one-to-one function from N into X
and let T be the finite complement topology
on X. Then (X,T) is T1. Let Y = {a, b} and let
S be the indiscrete topology on Y. Let g be the
function from (X,T) onto (Y,S) defined by
g(f(2n)) = a for all n in N and for all x not in
f(2N), let g(x) = b. Then g is open, but not
closed, which is a contradiction. Hence X is

finite.

4. Closed Images and Other Separation
Axioms.

Within Willard’s 1970 book3, an example
is given showing the closed continuous image
of a Tychonoff space need not be T2. Since
Tychonoff implies T2, then, as in the case of
T0, the closed image of a T2 space need not be
T2. However, as in the case of T0 spaces, T2

and other separation axioms can be used to
further characterize finite sets.

In the study of open images, it was
proven that a set X is nonempty and finite iff
there is exactly one topology T on X for which
(X,T)  has separation axiom P, where P was
replaced by each of T1, T2, Urysohn, T3, T31/2,
T4, completely normal T1, perfectly normal,
and metrizable1, which will be used below to
further characterize nonempty finite sets.

Theorem 4.1. Let X be a nonempty
set. Then the following are equivalent: (a) X
is finite, (b) for each topology T on X for which
(X,T) is T1, each closed image (Y,S) of (X,T)
is metrizable with S= P(Y), (c) for each
topology T on X for which (X,T) is T1, each
closed image (Y,S) of (X,T) is perfectly normal
with S= P(Y), (d) for each topology T on X
for which (X,T) is T1, each closed image (Y,S)
of (X,T) is completely normal T1 with S= P(Y),
(e) for each topology T on X for which (X,T)
is T1, each closed image (Y,S) of (X,T) is T4, (f)
for each topology T on X for which (X,T) is
T1, each closed image (Y,S) of (X,T) is T31/2

with S= P(Y), (g) for each topology T on X



for which (X,T) is T1, each closed image (Y,S)
of (X,T) is T3 with S= P(Y), (h) for each
topology T on X for which (X,T) is T1, each
closed image (Y,S) of (X,T) is Urysohn, and
(i) for each topology T on X for which (X,T)
is T1, each closed image (Y,S) of (X,T) is T2

with S= P(Y).

Proof: (a) implies (b): Let T be a
topology on X for which (X,T) is T1 and let
(Y,S) be a closed image of (X,T). By Theorem
3.2, S= P(Y), which is a metrizable topology
on Y.

Since metrizable implies perfectly
normal, which implies completely normal T1,
which implies T4, which implies T31/2, which
implies T3, which implies Urysohn, which
implies T2

3, then (b) implies (c), which implies
(d), which implies (e), which implies (f), which
implies (g), which implies (h), which implies
(i).

(i) implies (a): Since T2 implies T1, then
for each topology T on X for which (X,T) is
T1, each closed image (Y,S) is T1 with S= P(Y)
and by Theorem 3.2, X is finite.

Since T2 implies T1, then for each
topology T on a nonempty set X for which
(X,T) is T2, each closed image (Y,S) is
metrizable with S= P(Y). Thus for (a) implies
(b) in Theorem 4.1, T1 in part (b) can be
replaced by T2. If T1 in Theorem 4.1 is replaced
by T2, then, since the identity function form
(X,T) onto itself is closed, then (X,T) is T2 with
T= P(X), which implies there is exactly one
topology on X for which (X,T) is T2 and X is

nonempty finite. Thus T1 in the statement of
Theorem 4.1 can be replaces by T2.

In a similar manner T1 in the statement
of Theorem 4.1 can be replaced by each of
the other separation axioms given above the
statement of Theorem 4.1 giving many
additional topological characterizations of
nonempty finite sets.

Theorem 4.2. Let X be a nonempty
set. Then (a) X is finite iff (b) for each topology
T on X for which (X,T) is metrizable, each
function f from (X,T) onto a space (Y,S) is
closed iff it is open.

Proof: (a) implies (b): Let T be a
topology on X for which (X,T) is metrizable.
Then (X,T) is T1 and by Theorem 3.2 each
function f from (X,T) onto a space (Y,S) is
closed iff it is open.

(b) implies (a): Suppose X is infinite.
Let x be in X, let Z= X\ {x}, let f be a one-to-
one function from the natural numbers N into
Z, let U be the rational numbers in (0,1), let g
be a one-to-one function from U onto N, let xr

= f(g( r)) for each r in U, let E= {2n/p: n is a
natural number, p is prime, and 2n/p is in U},
and let F= U\ E as in the proof of Theorem
2.2. Let d be the function from XxX into [0,1]
defined by d(a,a)= 0 for all a in X, d(a,b)= d(b,a)
for all a and b in X, d(a,b) =1 for all distinct a
and b in X with at least one of a and b in X\
f(g(U)), and d(xr,xs) equals the absolute value
of s-r for all distinct r and s in U. Then d is a
metric on X. Let T be the topology on X generated
by d, let Y={c,d,e}, let S={Ø, Y,{c,d},{e}}, and
let h be the function from X onto Y defined by
h(u)= c for all u in f(g(E)), h(u) = d for all u in
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f(g(F)), and h(u)= e for all u in X\ f(g(U)).
Since E and F are dense in U, h is open, but
since (Y,S) is not T1, h is not closed. Thus X is
finite.

In a similar manner, using the same
counterexample, metrizable in Theorem 4.2
can be replaced by each of perfectly normal,
completely normal T1, T4, T31/2, T3, Urysohn,
and T2.

Examples can be easily constructed
showing that metrizable in Theorem 4.2 can
not be replaced by T0.

References

1. Charles Dorsett, “Topological Characteri-
zations  of Nonempty  Finite  Sets Using
Open Images and Separation Axioms,”
Ultra Scientist, Vol. 23(2), 451-454 (2011).

2. Charles Dorsett, “Additional Characteri-
zations  of  the T2 and Weaker Separation
Axioms,”  Mathematiki Vesnik, 64 no. 1,
61-71 (2012).

3. Steven Willard, General Topology, Reading
Massachasetts, Addison Wesley Publishing
Company (1970).

239 Ultra Scientist Vol.24(1)A, (2012).


