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Abstract

Graph coloring and graph domination are two major research
areas in the field of graph theory.  In this paper, we introduce the concept
of split and non-split dominator coloring, which combine the concept of
domination and coloring and prove some interesting results.
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1.  Preliminaries

In our study, we consider only simple
and undirected graphs. In this section, we
review the notions of domination and dominator
coloring1.

Definition 1.1 : Let G = (V, E) be a
graph. A subset D of V is called a dominating
set of G if every vertex in V – D is adjacent to
at least one vertex in D. The domination
number (G) is the minimum cardinality of a
dominating set in G.

Definition 1.2 : A proper coloring
of a graph G is an assignment of colors to the
vertices of G in such a way that no two adjacent
vertices receive the same color. The chromatic
number (G), is the minimum number of
colors required for a proper coloring of G. A
Color class is the set of vertices, having the
same color. The color class corresponding to
color i is denoted by Vi.

          Definition 1.3: A dominator coloring
of a graph G is a proper coloring in which
every vertex of G dominates every vertex of
at least one color class. It is implicit that if {v}
is a color class, then v dominates the color
class {v}. The dominator chromatic number
d(G) is the minimum number of colors required
for a dominator coloring of G.

2. Split Dominator Chromatic Number:

In this section, we combine the concept
of split domination2 and dominator coloring, to
define split dominator chromatic number
sd(G) and obtain sd(G) for some special classes
of graphs.

Definition 2.1: Consider a graph G
and its dominator coloring with d(G) colors.
The split dominator chromatic number of G
is the minimum number of color classes to be
removed so that the remaining graph of G is
disconnected and is denoted by sd(G).
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Theorem 2.2: The cycle graph Cn, n

 3 has sd(Cn ) = 


 

.otherwise1
3if2 n

Proof : Let Cn be the cycle graph of
order n  3 and let v1, v2, …, vn be the labels
of its vertices.  Here n takes one of the three
forms 3k, 3k+1 or 3k+2, k  1. When k = 1, a
dominator coloring for C3, C4 and C5 are
obtained by the coloring sequences (1, 2, 3),
(1, 2, 1, 2) and (1, 2, 3, 1, 2) respectively.  When
k  2, color the vertices v3i-2 by 1, v3i-1 by 2
and v3i by (i+2) for i = 1, 2, …, k.  When n =
3k+1, the vertex vn = v3k+1 is colored by a new
color (k+3) and when n = 3k+2, color the
vertices v3k+1 and v3k+2 by colors 1 and (k+3).
For the case n = 3, removal of any two color
classes results in a trivial graph and in all other
cases, removal of color class 1, results in a
disconnected graph.  Hence

sd(Cn) = 
 



 

.otherwise1
3if2 n

Theorem 2.3 : The path graph Pn of
order n  2 has sd (Pn) = 1.

Proof: Let Pn: v1, v2, ..., vn be a path
graph of order n  2. When n  8, a dominator
coloring of Pn is obtained by coloring the odd
subscripted vertices v1, v3, … by color 1 and
even subscripted vertices v2, v4, … respectively
by colors 2, 3, .... When n  9 (n = 3k,
n = 3k+1 or 3k+2, where k  3), color the
vertices v3i, i = 1, 2, …, k by 1, v3i+1, i = 0, 1,
…, k -1 by 2 and v3i+2, i = 0, 1, …, k – 1 by

(i+3). When n = 3k+1, color v3k+1 by (k+3), and
when n = 3k+2 color v3k+1 by 2 and v3k+2 by
(k+3). It is evident that removal of any one color
class results in a disconnected graph. Hence
sd(Pn) = 1.

Theorem 2.4: The wheel graph W1, n,

n  3 has sd(W1,n) = 
 



 

otherwise2
3if3 n

Proof : Let W1, n be a wheel graph
with n  3.  Let the vertices of W1, n be labeled
as follows.  The vertex at the centre is labeled
by v1 and the vertices on the rim are labeled
consecutively by v2, v3, …, vn. A dominator
coloring of W1, n is by coloring v1 by 1 and the
vertices in the rim alternatively by 2 and 3 from
vertex v2. When n is odd, the vertex vn is
colored by 4.  Now it is seen that the removal
of any 3 color classes in the case of n = 3 and
color classes 1 and 2 in other cases results in
a disconnected graph.  Hence

sd(W1, n) = 
 



 

otherwise2
3if3 n

Theorem 2.5 : The complete graph
Kn of order n  2 has sd(Kn) = n-1.

Proof : A dominator coloring of Kn is
by coloring its vertices v1, v2, …, vn by colors
1, 2, 3, …, n respectively. Therefore sd(Kn)
= n – 1.

Theorem 2.6: The complete bipartite
graph Km, n, m, n  1 has sd(Km, n) = 1.



Proof : In  Km, n, color the vertices  in
one of its partition by 1 and the vertices in the
other partition by 2. This gives a dominator
coloring of Km, n. Removal of either of the
color class results in a disconnected graph.
Hence sd(Km, n) = 1.

Note: For any tree T, sd(T) = 1.

3. Non-Split Dominator Chromatic Number:

In this section, we combine the concept
of non-split domination3, to define non-split
dominator chromatic number nd(G) and obtain
nd(G) for various classes of graphs.

       Definition 3.1: The non-split dominator
chromatic number of a graph G is the maximum
k  such that the removal of fewer than  k  color
classes does not split the graph and there is at
least one collection of  k  color classes whose
removal results in a connected subgraph of  G,
and is denoted by  nd(G).

Theorem 3.2 : For the cycle graph
Cn, n  3 and n  4, nd(Cn) = 1.

Proof: Consider the dominator coloring
of Cn as in the proof of theorem 2.2. In this
case, removal of color class of the color of
vertex vn results in a connected graph.  Hence
nd(Cn) = 1, when n  3 and n  4.

      Theorem 3.3 : For the wheel graph W1, n,

n  3, nd(W1, n) =




evenn
oddn

isif1
isif2

 Proof : Consider the dominator
coloring of W1, n as in the proof of theorem 2.4.
It is seen that the removal of color classes 2
and 3, when n is odd and the color class 2 when
n is even results in a connected graph. Hence we

conclude that nd(W1, n)=




evenn
oddn

isif1
isif2

Theorem 3.4: For the complete graph
Kn of order n  2, nd(Kn) = n-2.

Proof : A dominator coloring of Kn is
by assigning colors 1, 2, 3, …, n respectively
to its vertices. Removal of any n-2 color classes
results in a connected graph. Therefore
nd(Kn) = n – 2.
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