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Abstract

The lict graph ( )n G  of a graph  G  is the graph whose vertex

set is the union of the set of edges and the set of cut vertices of  G  in
which two vertices are adjacent if and only if the corresponding edges
of G  are adjacent or the corresponding members of G  are incident.

A Roman dominating function on a lict graph  ( ) ( ', ')n G V E

is a function   : ' 0,1, 2f V   satisfying the condition that every
vertex u' for which f (u')=0 is adjacent to at least one vertex v' for which
f (v')=2. The weight of a Roman dominating function is the value

 
' '

( ') ( ')
u V

f V f u


  . The minimum weight of a Roman dominating

function on a lict graph n(G)  is called the Roman lict domination number

of G and is denoted by   Rn G .

               In this paper we study the graph theoretic properties of   Rn G
and its exact values for some standard graphs and expressed in terms of
members of G but not the members of n(G). Also we establish the some
relations with other domination parameters.
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Introduction

In this paper, we follow the notation
and terminologies of Harary2. A vertex of
degree one is called an end vertex and its
neighbor is called a support vertex. A vertex
is called a cut vertex if removing it from G
increases the number of components of G. A
set SV is a dominating set if each vertex in
V is dominated by at least one vertex of S.
The domination number (G) is the minimum
cardinality of a dominating set.

In general we use  X   to denote the
sub graph induced by the set of vertices of X .
N(v) And N[v] denotes the open and closed
neighborhoods of a vertex v. The notation
     0 1G G   is the minimum number of
vertices (edges) in a vertex (edge) cover of

G. Also      0 1G G   is the maximal
independent set of vertex (edge) of G.

A Spider is a tree with the property
that the removal of all end paths of length two
of T results in an isolated vertex, called the
head of a Spider. Similarly an Octopus is a
tree with the property that the removal of all
end paths of length three of T results in an
isolated vertex, called the head of an Octopus.
Obviously the tentacle of an Octopus is an end
path of length three and the tentacle of a Spider
is an end path of length two1-5.

A caterpillar is a tree in which removal
of all end vertices of T results in a path.

The lict graph n(G) of a graph G is
the graph whose vertex set is the union of the
set of edges and the set of cut vertices of G in

which two vertices are adjacent if and only if
the corresponding edges of G are adjacent or
the corresponding members of G are incident6.

The definition of a Roman dominating
function is given implicitly in 1,4and8. For a graph
G=(V,E), let f : V{0,1,2}, and let (F0,F1,F2)
be the ordered partition of V induced by f,

where    \iV v V f v i    and  ,i iV n
for i=0,1,2. Note that there exist 1-1 correspon-
dence between the functions f : V'{0,1,2}
and the ordered partitions (F0,F1,F2). Thus, we
will write f=(F0,F1,F2). A Roman dominating
function (RDF) on a graph G=(V,E) is a function
f : V{0,1,2} satisfying the condition that
every vertex u for which f (u)=0 is adjacent to
at least one vertex v for which f (v)=2. The weight

of a RDF is the value  ( ) ( )
u V

f V f u


 . The

minimum weight of RDF on a graph G is called
the Roman domination number and is denoted

by   R G .

       We now define the Roman lict domination
number of a graph G as follows7.

For a lict graph n(G)=(V',E'), let f : V'
{0,1,2}, and let (F '0, F '1, F '2) be the ordered

partition of V' induced by f, where  ' ' '\ 'iV v V f v i  

  ' ' '\ 'V v V f v i    and  ' ' ,i iV n for i=0,1,2.
Note that there exist 1-1 correspondence
between the functions f : V' {0,1,2} and
the ordered partitions  (F '0, F '1, F '2). Thus,
we will write f = (F '0, F '1, F '2). A Roman
dominating function (RDF) on a lict graph
n(G)=(V',E') is a function f : V'{0,1,2}
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satisfying the condition that every vertex u'
for which f (u')=0 is adjacent to at least one
vertex v' for which f (v ')=2. The weight of a
Roman domination function is the value
 

' '
( ') ( ')

u V
f V f u



  . The minimum weight of

a Roman dominating function on a lict graph
n(G) is called the Roman lict domination number

of G and is denoted by   Rn G .

Results

We need the following results for our
further results.
Theorem A [3]: For any (p,q) graph G,

 
   

1
p G

G


 
   

.

Theorem B [5]: For any (p,q) graph G, p-q 
(G).
Theorem C [5]: If G is a connected graph,

then 
 

 ( ) 1
3

diam G G    
.

Theorem D [5]: For any graph G with end
vertex, (G)=s(G).
Theorem E [7]: For any connected (p,q) graph

G, 
 
   

2

1
pG

G


 
    

.

Theorem F [7]: For any graph G, (G2)+ (G)
t(G)+1.

In the following theorem, we establish
the exact values of Rn(G) for some standard
graphs.

Theorem [1]:
(1) For any path Pp, with p 3 vertices, Rn(Pp)

= p-1, if p = 3,5
=p-2, if p=4 and p6.

(2) For any  cycle  Cp,  with  p  3  vertices,
 2( )

3Rn p
pC  , if  0(mod 3)p  .

=
 2

3
p 

  
, otherwise.

(3) For any wheel Wp, with p  4 vertices,
   2

3Rn p
pW     

.

(4) For any complete graph Kp, Rn(Kp)=p-1.
(5) For any star K1,n, Rn(K1,n)=2.

The Roman domination number of a
Spider H as Rn(H) has both the lower bound
and upper bound with respect to the R(H).
Now in the following theorem we put the bound
on tentacles of a Spider and to obtain the lower
bound for Rn(H).

Theorem [2]: If G=H is any Spider
with at least two healthy tentacles then
Rn(H)R(H). Equality holds if H is a Spider
with exactly two healthy tentacles.

Proof: Let G=H is a Spider with at least
two healthy tentacles. Assume H is a healthy
or wounded Spider. Then   0, 1, 2f F F F  be
a Roman dominating function with Roman

dominating set D in H. Let   ' ' ' '
0, 1, 2f F F F

be the corresponding Roman dominating
function with Roman dominating set D in n(H).
Suppose v be the head of the Spider and
A={v1, v2,........,vn} be the set of end vertices of
healthy tentacles in H. Then {v}F2, {A}F1

and N(v)F0. Hence D=F0F1F2. In, n(H),



suppose E={e1, e2,........,en} be the set of non

end edges in H then     E V n H     such
that  , 1ie where i n    is a cut vertex of n(H)
with maximum degree and    2'E F  and
     0'V n H E F    . Clearly  0 2' ' 'D F F  ,
which gives the required result.

Again we have the upper bound for
Rn(H). To establish the upper bound for Rn(H).
we apply the bound on the tentacles of a Spider
and obtain the result in the following theorem.

Theorem [3]: If H is a Spider with
n-tentacles such that n-1 tentacles are wounded
then     Rn RH H  .

Proof: Let  f=(F0,F1,F2) be a Roman
dominating function in H and f = (F '0, F '1, F '2)
be a corresponding Roman dominating function
in n(H). Suppose statement of the theorem
holds, then  2{ }v F  where v is the head of
the Spider,    0N v F  and   1 1v F  where
v1 is the end vertex of the healthy tentacle such
that    0 1 2 3R H F F F      is a constant
positive integer for any value of n. Since there
exist exactly one non end edge {e1} in n(H).

Clearly   1 2'e F  and     1 0'V n H e F    .

Hence   0 2' ' 2Rn H F F    . Which gives
    Rn RH H  .

In view of  Theorem2 and Theorem3,
we have the following result.

Corollary: If H is a Spider with all
wounded tentacles, then     Rn RH H  .

In the following theorem we develop

the result on a graph G=T which is an octopus.

Theorem [4]: For any octopus T with

n-tentacles,     R RnT T  . If T is
(1) a healthy octopus.
Or
(2) a wounded octopus with exactly one
wounded tentacle of length two and does not
contains a wounded tentacle of length one.
Or
(3) a wounded octopus with exactly two
wounded tentacles of length two and at most
n wounded tentacles of length one.
Or
(4) a wounded octopus with only wounded
tentacles of length one.

Proof:

        Let f=(F0,F1,F2) be a Roman dominating
function with Roman dominating set as D in
an octopus T and f = (F '0, F '1, F '2) be a
corresponding Roman dominating function with
Roman dominating set as D' in n(T). Let v be
a head of the octopus.

For (1): Suppose statement of the
theorem holds then   1v F , 2( )N A F  where
A is the set of all end vertices in T and
 

0{ ( )}A N v F   such that  0 1 2D F F F   .

In n(T), the set of all non end edges
 { ;1 }iB i n   incident with N(A) in T belongs

to 2'F , 1'v F , and   { [ ( )] ( } 'iV n T v B F  

0{ [ ( )] ( } 'V n T v B F   . Clearly  0 1 2' ' ' 'D F F F   . Hence,

D=D' which gives     R RnT T  .
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For the conditions 2 and 4, we use the
contradiction.

For (2): Suppose     R RnT T 
and T has exactly one wounded tentacle of
length two and at least one wounded tentacle
of length one. Then in T,  2( )v N S F  , Where
S is the set of all end vertices of the healthy
tentacle,  0( )N v S F   and  

1u F , Where
is the end vertex of the wounded tentacle of
length two. Hence  0 1 2D F F F   . In n(T)
the set of all non end edges  { ;1 }iE i n 
incident with  { ( ) ( )}N S N u  belongs to F '2

and     0{ }} 'iV n T E F    . Hence  ' ' 'D F F 

0 2' ' 'D F F  , which gives     R RnT T  , a
contradiction1-8.

For (3):  Suppose U and W be the set
of end vertices of tentacles of length three and
two respectively in T. Then  2{ ( ) }N U v F  ,
 

1{ }W F  and    0{ }U N v F  .  Hence
 

0 1 2D F F F   . In n(T), the set of non end
edges  { ;1 }kE i n   incident with  { ( ) }N U N W

 { ( ) }N U N W  belongs to F'2 and    V n T E F   

0{ }} 'kV n T E F    . Hence  0 2' ' 'D F F  , which
gives     R RnT T  .

For (4): Let   1 1 2, ,........, iH t t t
where  1 i n  be the set of tentacles of

length one.   2 1 2, ,........, jH t t t  Where

 1 j n   be the set of tentacles of length two

and   3 1 2, ,........, kH t t t  where  1 k n 
be the set of healthy tentacles such that
 

1 2 3 ( )H H H E T   .

We consider the following cases.

        Case (1): Suppose  1H   and  2H 
such that there exist at least one element
 

2it H  and if i=1, then the condition (2) holds.

           Case (2): Suppose  1H   or  1H 
and  2H   such that there exist at least one
element  2jt H  and j = 1,2 then the result
gives the condition (3).

         Case (3): Suppose  1H   or  1H 
and  2H   such that there exist at least one
element  2kt H  such that k = 3,4,.... . Then
    2 1{ } ,v N U F W F    and     0N v U F 

where U and W be the set of and vertices of
tentacles of length three and two respectively
such that 0 1 2D F F F   .

In n(T), the set of non end edges
 { ;1 }fE f n   incident with    ( )N U N W F 

0( )N U N W F   which belongs to F'2 and    { } 'V n T E F   

  0{ } 'fV n T E F    such that 0 2' ' 'D F F   which

gives     R RnT T   a contradiction.

     For converse we give the proof for
condition (2) and the condition (4).

For the condition (2),

Assume S1 be the set of all end vertices
of the tentacles then  1 2( )N S F  and   { ( )}V T N S F

1 0{ ( )}V T N S F   such that 0 2D F F  . In n(T),
the set of non end edges (Ej) where  1 j n  ,
incident with N(S1) belongs to F'2 and

Roman lict domination in graphs. 453



     0{ } 'jV n T E F     such that  ' ' 'D F F 

0 2' ' 'D F F  , which gives     R RnT T  .

For the condition (4):  Let S2 be the
set of all end vertices of healthy tentacles then
 

2 2{ ( )}v N S F   and  
2 0{ ( ) { }}N v S F 

such that  
0 2D F F  . In n(T), suppose

 { ;1 }iH i n   be the set of non end edges

incident with N(S2)  then  2{ } 'iv H F   and

   0{ { { } }} 'iV n T v H F      such that

 0 2' ' 'D F F  , which gives     R RnT T  .

Theorem [5]: For any octopus T with
n-tentacles    R RnT T  . If T is a wounded
octopus with exactly one wounded tentacle of
length two and at least one wounded tentacle
of length one8.

         Proof: Let  : 0,1, 2 ;f V   be a RDF
with 

1 2( )D F F  as a RDS of T and f : V '
{0,1,2}; be RDF with  1 2' ( ' ' )D F F   as a
RDS of n(T). Also both D and D' the set F0

and F '0 respectively in T and n(T).

Suppose v be a vertex with maximum
degree in T, then v F2. If  and vi where 1 
i  n  be the set of end vertices of the tentacles
of length two three respectively. Then u F1,
 

2( )iN v F  and     0iN v v F  .  Since
there is exactly one wounded tentacle of length
two and at least one wounded tentacles of
length one, there exist e1=u1 and ej=uj be the
set of non end edges incident with N(u) and

N(vi) respectively such that   1 2' ;1ju u F i n   

1 2' ;1u u F i n    . Hence     R RnT T  .

Theorem [6]: For any octopus T with
n-tentacles     Rn RT T  . If  T is a wounded
octopus with at least three wounded tentacles
of length two5-8.

         Proof: Suppose T be a wounded octopus
with     Rn RT T   and has one or two
wounded tentacles of length two. Then by the
Theorem (4), we obtain the equality result,
which is a contradiction to our supposition.
Now assume that T is a wounded octopus with
at least three wounded tentacles of length two.
Let vi and uj where  3 i n   and  1 j n 
be the set of end vertices of tentacles of length
two and three respectively. Then  

1iv F ,
   2{ }jv N u F   and 

0{ ( ) }jN v u F   where

  v G . Clearly    0 1 2R T F F F    .

Now  , 2{ } 'i i j je w e w F    be the
set of non end edges incident with N(vi) and
N(uj) respectively such that  { } [ ( )]i je e V n T 

and  0[ ( )] { } 'i jV n T e e F   .  Hence

   0 2' 'Rn T F F   .

If the number of wounded tentacles
of length two increases in T then   R T  is an
increase by 1 for each tentacle where as the
  Rn T  increases by 2 for corresponding
wounded tentacles of length two in n(T).

Theorem [7]: For any (p,q) graph G

with p  3 vertices 
 

 
( )Rn

pG
G


 

   
.
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Equality holds if  1, 4,nG K P  and C3.

Proof: Let f : V '{0,1,2} be a RDF
with a RDS D ' in n(G) such that
 0 1 2' ( ' ' ' )D F F F    and  [ ( )]V n G E C 

where E and C are the set of edges and cut
vertices of G.

Suppose   1 1 2, ,........ nC v v v  be the
set of all non end vertices in G then there exist
at least one vertex of maximum degree (G)

in C1 such that   .D G P  . It follows that

 

 
( )Rn

pG
G


 

   
.

For the equality we consider the following
cases.

Case (1): Suppose G is isomorphic to
a star, then    pn G K . Clearly  ( ) 2Rn G  .

Since for any star K1,n,    1p G    and
 

 
2p

G
 

  
.  Hence it follows that

 

 
( )Rn

pG
G


 

   
.

Case (2): Suppose G = P4 or C3. Then
from Theorem (1),  ( ) 2Rn G   and we have

 

 
2p

G
 

  
. Hence 

 

 
( )Rn

pG
G


 

   
.

Theorem [8]: For any graph G with

p3 vertices   '( ) 1 RnG G    where

  ' G  is the edge domination number of G..

Proof: For a graph G = (V, E). Let
  1 2' , ,........ nE e e e be an edge dominating

set of G and   1 2, ,........, nC c c c  be the set
of all cut vertices in G. Let f : V '{0,1,2} be
a RDF in n(G) and     ( )E G C G V n G    .

Clearly   'E C V n G     . Also E ' belongs

to F '2 or F '1 in n(G) such that  1 2' 'F F  is
a roman lict domination number of G. Hence
  '( ) 1 RnG G   .

Theorem [9]: For any (p,q) graph G,
    0Rn G G  .

        Proof: Let   1 2, ,........, nS v v v  where
1in be the vertex cover of G such that
  0S G . Now let   1 2' , ,........, kD v v v
be the minimal roman dominating set of n(G).

Since     ( )E G C G V n G     . It follows

that  'D S . Clearly   0'D G . Hence
    0Rn G G  .

Theorem [10]: If T is a tree with
every non end vertex is adjacent to at least

one end vertex, then    1Rn T P C    .

Proof: Let   1 2, ,........, nS v v v  be

the set of all cut vertices in T such that  S C .

Now without loss of generality, let  : 0,1, 2 ; 0,1, 2if V i 

 : 0,1, 2 ; 0,1, 2f V i  and  
0 1 2( ' , ' , ' )F F F  be
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the ordered partitions of V ' induced by f with
 'i iV n for i=0,1,2. Since the set F'2 dominates
F '0, the set  

1 2' ( ' ' )D F F   is a roman
dominating set of n(T). Further each block in
n(T) is a complete block and the number of
cut vertices in T is equal to the number of
blocks in n(T). Clearly it  follows that
 ' 1D P S   . Therefore    1Rn T P C    .

Theorem [11]: For any connected

(p,q) graph G with  
5G P ,   Rn G q G   

 ' 1G q G    where   ' G  is the maximum
edge degree in G.

          Proof: Let 1 2' ( ' ' )D F F  be a RDS
with minimum number of vertices in n(G)
having one vertex in D ' and other in
 

0' ' 'F V D  . Suppose 'e' be an edge of maxi-

mum degree   ' G  in G. Then  ' 'e v D 
in n(G). Further if for every vertex   ' 'u N v
is adjacent to a vertex w' which is not adjacent
to v' in n(G). Then it follows that  [ ( )] { ' ' }V n G N v w 

   [ ( )] { ' ' }V n G N v w   is a roman dominating set of
n(G). Hence     ' 1Rn G q G    . Suppose,
G=P5, let {e1, e2, e3, e4} be the set of edges
and {c1, c2, c3}be the set of cut vertices of P5.

Then   1 2 3 4 1 2 3{( , , , ) ( , , )}e e e e c c c V n G    .

Now   5 4Rn P  . But   ' 1 3q G  
which gives the contradiction result to the
statement. Hence G  P5. This completes the
proof.

Theorem [12]: For any graph G with

3p ,    t RnG G  .

Proof: Suppose D is a dominating set
of G, then DH is a total dominating set of G,
where   H N D  and  H V D  .  Let
  : ' 0,1, 2f V   be a RDF with RDS D' in
n(G). Let  1 2 3{ , , ,......., }nF e e e e  be the set
of edge in G, which is an dominating set of G
and  

1 2{ , ,......., }nS c c c  be the set of cut
vertices of G such that  S D H  . Since
  S F V n G     . The edges incident with

 { }D H  together with F forms  RDS D' in
n(G). Further the edges {ei} where  1 i n 
which are incident with S belongs to F'2 and
the non end edges which are not adjacent to
{ei} belongs to F'1 and remaining vertices of
n(G) are dominated by F'2 such that
 

1 2' ( ' ' )D F F  . Clearly  'D H D  .

Hence     t RnG G  .

Theorem [13]: For any (p,q) graph G,
    RnG G  . Equality holds if and only if

G is K2.

Proof: Let 0 1 2( ' , ' , ' )f F F F  be a
Lict roman dominating function. Since F'2
dominates F'0,  1 2( ' ' )F F  is a roman domi-

nating set of n(G). Hence     1 2' 'G F F  

 

 

1 2

1 2

' '

' 2 '

Rn

F F

F F

G

 

 



For equality, suppose  2G K . Then consider
the following cases.
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Case (1): Assume G is K1,2. Then

from Theorem [1],    2Rn G  . But    1G  ,
a contradiction.

Case (2): Assume G is K3. Then again

from Theorem[1],    2Rn G  . and    1G  ,
which gives a contradiction.

For the converse, suppose G=K2, then one can

easily verify that     RnG G  .

Theorem [14]: For any graph G,
      2 1 RnG G G     .

Proof: The proof of this Theorem
follows from The Theorem [12] and  Theorem

[F];       2 1tG G G     .

Theorem [15]:  For any (p,q) graph

G,   Rnp q G  .

Proof: The proof of the theorem
follows from Theorem [13] and Theorem [B];
  p q G  .

Theorem [16]: If G is a connected

graph, then 
 

 ( ) 1
3 Rn

diam G G    
.

Proof: It follows from Theorem [13]

and Theorem[C]; 
 

 ( ) 1
3

diam G G    
.

Theorem [17]: For any (p,q) graph

G, 
 

   
1 Rn

p G
G


 

   
.

Proof: It follows from the Theorem

[13] and Theorem [A]; 
 

   
1

p G
G


 

   
.

Theorem [18]: For any graph G,
    s RnG G  .

Proof: From Theorem [13], we have
    RnG G   ................... (1)

Also from Theorem [D],     sG G   (2)
From equation (1) and (2), we get
    s RnG G  .

Theorem [19]: For any connected (p,q)

graph G,     2
RnG G  .

Proof: Since from Theorem [17], we

have 
 

   
1 Rn

p G
G


 

   
......... (1)

Also from Theorem [E], we have
 
   

2

1
pG

G


 
    

………….(2)

So from equation (1) and (2). We obtain
    2

RnG G  .

Theorem [20]: For any non trivial tree
T       0 1Rn T T T     . 
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        Proof:   : 0,1,2f V   be a RDF with
RDS D' in n(T). Let  

1 2( , ,........, )nE e e e
and  1 2( , ,........, )nC c c c  be the set of edges
and cut vertices of T  respectively then
  E C V n G     .

Let D be a minimal dominating set of
T and B be a maximum independent set of T.
Since B is a dominating set of T such that
 D B and  RnD T . Clearly   Rn T D B   

1T D B   . Hence       0 1Rn T T T     .

Lemma: If T is any caterpillar with at
least three n codes such that (c2, c3, ...., cn-1)
codes are zero, then     Rn RT T  .

Proof: Let   : 0,1,2f V   and
  : ' 0,1,2f V   be a roman dominating
functions with roman dominating sets D and
D' respectively. Suppose T is a caterpillar with
{Cn} codes where n3  and (c2, c3, ...., cn-1)=0.

Then we have following cases.
Case (1): If the codes Cn=3k; k=1,2,...., then
{Cn,Cn-1}F2

where i = 3 h - 1; h = 1,2,.....
Case (2): If Cn=3k+1; k=1,2,...., then {Cn,Cn-1}
F2 where j = 3h; h = 1,2,.....
Case (3): If Cn=3k'-1; k=2,3,...., then {Cn-2}
F1 and {Cn,Cn-1}F2

where l=3k'-2; l=2,3,.... . Clearly    0 1 2R T F F F   

0 1 2T F F F   .
Now in n(T), if Cn=C3 and 2k+2;

k=1,2,.... . and {ei} is the set of minimum number
of edges incident with F1 and F2 or N(F2), then
{ei} belongs to F'2 in n(T). Suppose Cn=2k'+1;
k'=2,3,.... be the minimum number of edges
incident with F2 or N(F2) in T belongs to F'2 in

n(T)  and there exist a vertex cCn-2 in T such
that cF'1 in n(T). Clearly  

0 1 2( ' ' ' )F F F T 
 0 1 2( ' ' ' ) RnF F F T  . Hence     Rn RT T  .

Finally we obtain the Nordhaus-
Gaddum type result.

Theorem [21]: Let  G be a connected
(p,q) graph such that both G and  G  are

connected, then (i) 
 

    2
2Rn Rn
pG G       

.

(ii) 
 

   
2

. 2
2Rn Rn
pG G      

.
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