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Abstract

Various papers have been written on the theory of circulant
graphs3,6,8,9,10. Also graphs with circulant adjacency matrices is
discussed in7. Circulant graphs have important applications to the theory
of designs and error correcting codes12. This paper is a study of
relationship between circulant graphs and binary linear codes. It
establishes a strong connection between directed circulant graphs and
binary cyclic codes . Each binary cyclic code corresponds to an
equivalence class of directed circulant graphs. Circulant graphs
associated with combination of cyclic codes is also discussed.
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1. Introduction

Circulant graphs is a special class of
Cayley graphs. Various papers have been
written on the theory of circulant graphs3,6,8,9,10.
It is interrelated with many branches of
mathematics outside graph theory. For example,
for geometers, circulant graphs are known as
star polygons4. Circulant graphs have been used
to solve problems in group theory1 as well as
number theory and analysis5. They have
important applications to the theory of designs
and error correcting codes12. This paper is a
study of relationship between circulant graphs

and binary linear codes. It establishes a strong
connection between directed circulant graphs
and binary cyclic codes. Each binary cyclic
code corresponds to an equivalence class of
directed circulant graphs. Circulant graphs
associated with combination of cyclic codes
is also discussed.

2. Basic Concepts :

A graph G is a pair G = (V,E) consisting
of a finite set V and a set E of 2-element
subsets of V. The elements of V are called
vertices and the elements of E are called
edges. Two vertices u and v of G are said to
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be adjacent  if there is an edge e = (u,v)  E.
Two edges are said to be adjacent if they have
a common vertex. A directed graph or
digraph consists of a finite set V of vertices
and a set A  of ordered pairs of distinct vertices
called arcs. If the ordered pair (u,v) is an arc
a we say that arc a is directed from u to v.

2.1. Definition [2] :

Let G be a group and S be a subset of
G\{e}. We say that a graph X is a Cayley
graph of G with connection set S written as
X = Cay(G, S) if
(i)V(X) = G
(ii) A(X) = {(g, sg): g  G & s  S }

2.2. Definition [1, 10] :

Let Zn denote the additive group of
integers modulo n and let SZn\{0). If X=Cay
(Zn, S), then we say X is a circulant graph
of order n.

2.3. Definition [2]:

The adjacency matrix of a directed
graph X is the matrix  (X) with rows and
columns indexed by vertices of X. Each entry

 ij is equal to the number of times the arc (i, j)
appears in X.

The adjacency matrix of a circulant
graph has a pleasing nature : each row is the
cyclic shift of the preceding row. If (a1, a2,
………… an) is the first row, then (an, a1,
………… an-1) is the second row (an-1, an,
………… an-2) is the third row and finally (a2,
a3, ………, a1) is the nth row.

If F represents the binary field, thenFn

the set of all n-tuples of F is an n-dimensional
vector space over F. A k-dimensional subspace
of Fn is called an [n,k] binary linear code C.
A basis of C consists of k linearly independent
binary n-tuples. The matrix G formed by the
basis vectors is called a generator matrix of
C.The elements of C are called code words
and are linear combinations of the rows of the
generator matrix G. Since a vector space can
have many basis, a code C has many generator
matrices.

2.4. Definition [11]:

An [n,k] code C is called cyclic if
whenever x=(a0, a1, ………… an-1) is in C, so
is its first cyclic shift y=(an-1, a1, ……… an-2).

This means that (an-2, an-1, …… an-3)
the first cyclic shift of y and all other cyclic
shifts of y are also in C. When considering cyclic
codes it is useful to let a vector (a0, a1,…, an-1)
corresponds to a polynomial a0+ a1x + ……+
an-1 x

n-1. Then (an-1, a0, .…,an-2) corresponds
to an-1+ a0x + ……+ an-2xn-1. This polynomial
equals the polynomial (a0+ a1x + ……+ an-1

xn-1)x  (modulo xn-1). Hence the cyclic shift
corresponds to multiplication by x. If F[x]
represents the ring of polynomials over F, then

the set Rn=   consists of polynomials over

F of degree less than n is a ring. Polynomials in
Rn are added co-ordinatewise and multiplication
is modulo (xn – 1). The following theorem give
an insight into the structure of cyclic codes.

2.5. Theorem [ 11] :

A set of elements S  inRn corresponds
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to a cyclic code if and only if  S is an ideal in
Rn.
2.6. Theorem [11] :

Rn is a principal ideal ring. If C is an
ideal in Rn and g(x) is the monic polynomial of
smallest degree in C, then g(x) is uniquely
determined and C = <g(x)>.

The unique monic polynomial g(x) of
smallest degree in C is called the generator
polynomial of C. To find the generator
polynomial we make use of the following
theorem.

2.7. Theorem [11] :

If C is an ideal in Rn, the unique monic
generator g(x) of C of smallest degree divides
(xn – 1) and conversely if a polynomial g(x) in
C divides (xn – 1), then g(x) has the lowest
degree in <g(x)>.

When considering binary cyclic codes,
we here assume that n is of the form 2m-1.
Note that when n is odd xn -1 has distinct
factors. There is a nice relationship between
the dimension of a cyclic code and the degree
of its generator polynomial.

2.8. Theorem [11] :
If the degree of g(x) is n-k, then the

dimension of C = <g(x)> is k. if g(x) = g0 +
g1x + g2x2 + ………. + gn-kxn-k, then the
generator matrix of C is

 

Thus the generator matrix of C is the
matrix whose first row is g(x) and the second
row is g(x)x, the third row is g(x)x2…………
until the last row g(x)xk-1. That is g(x) and its
k-1 cyclic shifts. We now establish a relationship
between circulant graphs and cyclic codes.

3. Equivalence of circulant graphs and
cyclic codes :

As it is stated earlier, the adjacency
matrix of a circulant graph is always a cyclic
nxn matrix. In fact, if   is the adjacency matrix
of a circulant graph X = Cay(Zn, S) with its
first row r1 is having 1 in the i1, i2,……… ik

th

positions and 0 in the remaining positions then
the connection set is  S = {i1, i2,……… ik} and
therefore (1, i1 + 1), ………., (1, ik+1)are arcs
in X so that i1 + 1,……..,ik + 1 th positions of
the second row r2 are 1 and the remaining
positions 0. This is clearly the first cyclic shift
of r1. Similarly r3 is the second cyclic shift of
r1 and so on. Also there is a one to one
correspondence between circulant  graphs and
binary cyclic n x n matrices other than those
with leading element  1. We make use of this
relationship to prove the equivalence of
circulant graphs and cyclic codes.

3.1. Theorem :

If C is a binary cyclic code of length
n, then C corresponds to a circulant graph on
Zn. Conversely if X = Cay(Zn, S) is a circulant
graph on Zn, then X corresponds to a cyclic
code.

Proof :
Let C be a cyclic code of length n. If



g(x) is its generator polynomial, then g(x)/xn–1.
Let g(x) = g0 + g1x + g2x2 + ……. + gn-kxn-k.
To the kxn generator matrix G, adjoin the
remaining n-k cyclic shifts to get the nxn matrix

 A=  

Choose any row rj having its first
element 0. Let B be the nxn matrix formed
with rj as the first row and remaining rows the
n-1 cyclic shifts of rj.

Since each row of A is a row of B
and vice versa, and that C consists of linear
sums of rows of A, it can be generated by B.
Now B is a cyclic n x n binary matrix with
leading element 0, hence form the adjacency
matrix of a circulant graph

Conversely, let there be a circulant
graph X = Cay(Zn, S). If A is the adjacency
matrix of X, then A is a cyclic nxn matrix with
leading element 0. Let C be the row space of
A. The first row r1 corresponds to a
polynomial k(x) of degree  n-1. The remaining
rows are xk(x), x2k(x),………,xn-1k(x).. We
prove that C is a cyclic code. Let s(x)  C.
Then s(x) is a linear combination of these
polynomials

s(x) = a0k(x) +a1xk(x)+ a2 x2k(x) +………+
an-1 xn-1k(x).
Then

xs(x) = a0 xk(x) +a1 x2 k(x)+ ………+ an-1 k(x)
(mod (xn-1))
     = an-1 k(x)+a0 x k(x)+ ………+ an-2 x

n-1 k(x)

This means that the first cyclic shift of s(x)
can be generated by the rows of A.
Consequently the second cyclic shift and all
the remaining cyclic shifts can be generated
using the rows of A. Thus s(x) and all its cyclic
shifts belong to C, hence C is a cyclic code 

Note that the correspondence mentioned
in the theorem is not a one to one correspon-
dence. However the relation that ‘two circulant
graphs are equivalent if and only if the cyclic code
representing both are equal’ is an equivalence
relation.

The following theorem is a useful way
to find the generator polynomial of the cyclic
code representing a circulant graph.

3.2. Theorem

Suppose X= Cay(Zn, S) be  a circulant
graph. Let C = <k(x)>be the cyclic code
representing X. Then g(x)=gcd (k(x), xn–1) is
the generator polynomial of C and C =<g(x)>.
If g(x) has degree n – k, then dim C = k

Proof :
Let C = <k(x)> be the cyclic code

representing X. Then k(x) is the first row of
the adjacency matrix of X.We first prove that
k(x) is a linear combination of g(x) and its
cyclic shifts and that g(x) is a linear combi-
nation  of k(x) and its cyclic shifts.

Since g(x)=gcd (k(x), xn-1), g(x)/ k(x).
Therefore k(x)=a(x) g(x) for some a(x)Rn. If
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   a(x) = a0 +a1 x+ a2 x2 +………+ an-1 xn-1,

we have

k(x) = a0g(x) +a1xg(x)+ a2 x2g(x)
+………+ an-1 xn-1g(x)

Thus k(x) is a linear combination of g(x) and
its cyclic shifts.Again, since
g(x) = gcd (k(x), xn -1 ), by Eclidean algorithm,
g(x) = b(x) k(x) + a(x) (xn -1)  in F[x], hence
g(x) = b(x) k(x) in Rn. If
b(x) = b0+b1x+b2x2+………+bn-1 xn-1, we have

g(x) = b0k(x) +b1xk(x)+ b2 x2k(x) +………+
bn-1 xn-1 k(x), thus g(x) is a linear combination
of k(x) and its cyclic shifts.Therefore C =
<g(x)>. Since g(x) / xn – 1, Theorem 2.7
guarantee that g(x) is the generator polynomial
of C. Finally, if g(x) has degree n – k, by
Theorem 2.8,  C has dimension k 

3.3. Example :
Consider the circulant graph X = Cay

(Z7 ,{3,5}). The adjacencymatrix of X is

 

The polynomial represented by X is k(x) = x3

+ x5 = x3 (1 + x2) = x3 (1 + x)2.
We know

   x7 – 1 = (1 + x) (1 + x + x3)( 1 + x2 + x3)

Therefore gcd (k(x), x7 – 1) = 1 + x. Hence X
corresponds to the cyclic code C = <1 + x>.
Since the degree of the generator polynomial
is 1, dimension of the code is 6 

3.4. Example :

Consider the circulant graph X = Cay
(Z15, {2,4,7,9}). The polynomial represented
by X is
k(x) = x9 + x7 + x4 + x2

       = x2(x + 1)3 (x4 +x3 + x2 + x + 1)
We have
x15 – 1 =(x + 1)(x2 + x + 1)(x4 + x3 + 1)(x4 + x
+1) (x4 + x3 +x2 + x + 1).  Therefore
gcd(k(x), x15– 1) = (x+ 1) (x4 + x3 +x2 + x + 1)

 = x5 + 1

Thus g(x) = x5 + 1 is the generator
polynomial of the corresponding code. Since
the degree of g(x) is 5, dimension of the code
is 10 

We now seek a condition under which
the cyclic code corresponding to one circulant
graph becomes a subset of another.

3.5. Theorem :

Suppose X=Cay(Zn, k1(x)) corresponds
to the code C1 and Y=Cay (Zn, k2(x)) corresponds
to the code C2. If k2(x) / k1(x), then C1  C2.
The converse is not however true.

Proof :

        If g1 and g2 are the generator polynomials
of C1 and C2, then

g1(x) = gcd (k1(x), xn -1)   and  g2(x)
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= gcd (k2(x), xn -1). Suppose  k2(x) / k1(x),
then k1(x)= a(x) k2(x). Now gcd (k2(x), xn -1)
/ gcd (k1(x), xn -1). That is g2(x) / g1(x), hence
C1  C2. The converse is not however true.
For example
Let
    X=Cay (Z7, {1,2}) and Y=Cay  (Z7, {2,3,6})
Here

k1(x) = x + x2 and k2(x) = x2 + x3 + x6

g1(x) = (1 + x) and g2(x) = 1. Therefore
C1  C2 but k2(x)  k1(x) 

We shall now investigate the circulant
graphs corresponding to the intersection of the
cyclic codes and sum of the cyclic codes
representing two different circulant graphs.
For this we require the use of the following
theorem.

3.6. Theorem [11] :

Let C1 and C2 be cyclic codes with
generator polynomials g1(x) and g2(x), then C1

 C2 has generator polynomial g(x) = lcm
(g1(x), g2(x)) and C1 + C2 has generator
polynomial gcd (g1(x), g2(x)).

1.4. Theorem:
       Suppose that a cyclic code C1 corresponds
to a circulant graph x = Cay(Zn, k1(x)) and C2

corresponds to the circulant graph Y = Cay
(Zn, k2(x)), then C1 C2 corresponds to Z =
Cay (Zn, k1(x) k2(x)) and C1 + C2 corresponds
to U = Cay (Zn, gcd (k1(x), k2(x))

Proof :
      Let g1 and g2 be the generator polynomials

of X and Y respectively. Then
g1(x)=gcd (k1(x), xn-1) and  g2(x)=gcd (k2(x), xn-1).

Using Theorem 3.6, C1  C2 has generator
polynomial
g(x)=lcm (gcd (k1(x), xn-1), gcd (k2(x), xn-1)).

We claim thatthis is equal to gcd
(k1(x)k2(x), xn -1). Since n is odd, we know
all the factors of xn – 1 are distinct.  Therefore
the factors of gcd (k1(x)k2(x), xn - 1) are all
distinct. They can be classified into 3 groups

   u : factors of xn -1 in k1(x) but not in k2(x)
   v : factors of xn -1 common to both k1(x)
        and k2(x)
   w: factors of xn -1 in k2(x) but not in k1(x)
Thus

gcd (k1(x)k2(x), xn - 1) = u v w
Now
          gcd (k1(x), xn - 1)=u v and  gcd (k2(x),
xn - 1) = v w

Since gcd (u, v) = gcd (v, w) = gcd (u, w) = 1
and that each of u, v, w has distinct factors, it
follows that

lcm (gcd (k1(x), xn -1),  gcd (k2(x),
xn -1)) = u v w. Thus

lcm (gcd (k1(x), xn -1),  gcd (k2(x), xn

-1)) =  gcd (k1(x)k2(x), xn - 1)

Hence  C1  C2 corresponds to the circulant
graph Z = Cay (Zn, k1(x) k2(x)).

Again by Theorem 3.6, C1 + C2 has
generator polynomial gcd (gcd (k1(x), xn -1),
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gcd (k2(x), xn -1)). We claim that this is equal
to gcd (k1(x), k2(x), xn -1). If q(x) divides gcd
(gcd (k1(x), xn -1), gcd (k2(x), xn -1)), then q(x)
divides both gcd (k1(x), xn -1)  andgcd (k2(x),
xn -1). This implies q(x) divides k1(x), k2(x)
and xn – 1, hence divides gcd (k1(x), k2(x),
xn-1). On the other hand if q(x) divides gcd
(k1(x), k2(x), xn -1), then it divides all of k1(x),
k2(x), and xn – 1. But then q(x) divides gcd
(k1(x), xn -1) and gcd (k2(x), xn -1), hence
divides gcd (gcd (k1(x), xn -1), gcd (k2(x),
xn -1)). Therefore C1 + C2 has generator
polynomial gcd (k1(x), k2(x), xn -1) Since this
is equal to gcd (gcd (k1(x), k2(x)), xn -1), we
conclude that C1 + C2 corresponds to the
circulant graph U = Cay (Zn, gcd (k1(x),
k2(x)) 

3.8. Example :
Suppose  X = Cay (Z15, {3,4,5,8} and

Y = Cay (Z15,{5,6,8,9}).  If C1 and C2 are the
cyclic codes representing these circulant
graphs, then  C1  C2 represents the circulant
graph Z = Cay (Z15 , {1,2,8,13}) and C1 + C2

represents the circulant graph U = Cay( Z15,
{5,3}) 
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