Approximation of conjugate series of a fourier series by product summability

MAHENDRA MISRA ${ }^{1}$, B.P. PADHY ${ }^{2}$, N.K. PANDA ${ }^{3}$ and U.K.MISRA ${ }^{4}$

(Acceptance Date 20th November, 2012)

Abstract

In this paper a theorem on degree of approximation by product summability $(E, q)\left(N, p_{n}\right)$ of the conjugate series of the Fourier series of the function f of class $\operatorname{Lip}(\xi(t), r)$.

Key words: Degree of Approximation, $\operatorname{Lip}(\alpha, r)$ class of function, $\operatorname{Lip}(\xi(t), r)$ class of function, (E, q) - mean, $\left(N, p_{n}\right)$ mean, $(E, q)\left(N, p_{n}\right)$-mean, Fourier series, conjugate of the Fourier series, Lebesgue integral.

2010-Mathematics subject classification: 42B05, 42B08.

1. Introduction

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty, \text { as } n \rightarrow \infty,\left(P_{-i}=p_{-i}=0\right. \tag{1.1}
\end{equation*}
$$

Let $\sum a_{n}$ be a given infinite series with $\quad i \geq 0$).
the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ The sequence -to-sequence transformation be a sequence of positive real numbers such that

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(N, p_{n}\right)$ - mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficient $\left\{p_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{1.3}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(N, p_{n}\right)$ summable to s.

The conditions for regularity of $\left(N, p_{n}\right)$ summability are easily seen ${ }^{1}$ to be

$$
\left\{\begin{array}{l}
(i) \quad \frac{p_{n}}{P_{n}} \rightarrow 0, \text { as } n \rightarrow \infty \tag{1.4}\\
(i i) \sum_{k=0}^{n} p_{k}=O\left(P_{n}\right), \text { as } n \rightarrow \infty
\end{array}\right.
$$

The sequence-to-sequence transformation ${ }^{1}$,

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} \tag{1.5}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$.

If

$$
\begin{equation*}
T_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{1.6}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) summable to s.
Clearly (E, q) method is regular. Further, the (E, q) transform of the $\left(N, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{gather*}
\tau_{n}=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} T_{k} \\
=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} s_{v}\right\} \tag{1.7}
\end{gather*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s \quad, \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $(E, q)\left(N, p_{n}\right)$ summable to s.

Let $f(t)$ be a periodic function with period 2π and L-integrable over $(-\pi, \pi)$. The Fourier series associated with f at any point " x " is defined by

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n}\right.
$$

$\sin n x) \equiv \sum_{n=0}^{\infty} A_{n}(x)$,
and the conjugate series of the Fourier series (1.9) is
$\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum_{n=1}^{\infty} B_{n}(x)_{,(1.10)}$

Let $\bar{S}_{n}(f ; x)$ be the n-th partial sum of (1.10). The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.11}
\end{equation*}
$$

and the L_{v}-norm is defined ${ }^{2}$ by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.12}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by [5].
$\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\}(1.13)$ and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.14}
\end{equation*}
$$

A function f is said to satisfy Lipschitz condition (here after we write $f \in \operatorname{Lip} \alpha$) if
$|f(x+t)-f(x)|=O\left(\left.t\right|^{\alpha}\right), 0<\alpha \leq 1,(1.15)$
and $f(x) \in \operatorname{Lip}(\alpha, r)$, for $0 \leq x \leq 2 \pi$, if
$\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O\left(|t|^{\alpha}\right)$,
$0<\alpha \leq 1, r \geq 1, t>0$.

For a given positive increasing function $\xi(t)$, the function $f(x) \in \operatorname{Lip}(\xi(t), r)$, if

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)) \\
& r \geq 1, t>0 \tag{1.17}
\end{align*}
$$

We use the following notation throughout this paper:
We use the following notation throughout this paper :

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\}, \tag{1.18}
\end{equation*}
$$

and

$$
\begin{gathered}
\bar{K}_{n}(t)=\frac{1}{\pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\right. \\
\left.\frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
\end{gathered}
$$

Further, the method $(E, q)\left(N, p_{n}\right)$ is assumed to be regular.

2. Known Theorem:

Dealing with The degree of approximation by the product mean Misra et al. ${ }^{2}$ proved the following theorem using (E, q) $\left(\bar{N}, p_{n}\right)$ mean of conjugate series of Fourier series :

Theorem 2.1:
If f is a 2π-periodic function of class $\operatorname{Lip} \alpha$, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means of the conjugate series (1.10) of the Fourier series (1.9) is given
by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$ where τ_{n} is as defined in (1.7).

Very recently Paikray et al. ${ }^{3}$ established a theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series of Fourier series of a function of class Lip (α, r). They prove:

Theorem 2.2:
If f is a 2π-Periodic function of class $\operatorname{Lip}(\alpha, r)$, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means of on he conjugate series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha+\frac{1}{r}}}\right), 0<\alpha<1, r \geq 1$, where is as defined in (1.7).

3. Main theorem:

In this paper, we have proved a theorem on degree of approximation by the product
mean $(E, q)\left(N, p_{n}\right)$ of the conjugate series of the Fourier series of a function of class $\operatorname{Lip}(\xi(t), r)$. We prove:

Theorem 3.1:

Let $\xi(t)$ be a positive increasing function and f a 2π-Periodic function of the class $\operatorname{Lip}(\xi(t), r), r \geq 1, t>0$. Then degree of approximation by the product $(E, q)\left(N, p_{n}\right)$ summability means on the conjugate series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1$. where τ_{n} is as defined in (1.7).

4. Required Lemmas:

We require the following Lemmas to prove the theorem.

Lemma 4.1:

$$
\left|\bar{K}_{n}(t)\right|=O(n) \quad, 0 \leq t \leq \frac{1}{n+1} .
$$

Proof:

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$ then

$$
\left|\bar{K}_{n}(t)\right|=\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|
$$

$$
\begin{aligned}
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\cos \frac{t}{2}-\cos v t \cdot \cos \frac{t}{2}+\sin v t \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\left(\frac{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)}{\sin \frac{t}{2}}+\sin v t\right)\right\}\right. \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\left(O\left(2 \sin v \frac{t}{2} \sin v \frac{t}{2}\right)+v \sin t\right)\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}(O(v)+O(v))\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \frac{O(k)}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right| \\
& =O(n)
\end{aligned}
$$

This proves the lemma.
Lemma-4.2:

$$
\left|\bar{K}_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof:

$$
\text { For } \frac{1}{n+1} \leq t \leq \pi \text {, by Jordan's lemma, we have } \sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi} \text {. }
$$

Then

$$
\left|\bar{K}_{n}(t)\right|=\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|
$$

$$
\begin{aligned}
& =\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\cos \frac{t}{2}-\cos v \frac{t}{2} \cdot \cos \frac{t}{2}+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} \frac{\pi}{2 t} p_{k-v}\left(\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}\right)\right\}\right| \\
& \leq \frac{\pi}{2 \pi(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right\}\right| \\
& \left.=\frac{1}{2(1+q)^{n} t} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right\}\right.\right\}
\end{aligned}
$$

$$
=\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \begin{array}{r}
\text { following Titchmarch }{ }^{4} \\
\overline{s_{n}}(f ; x)-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \overline{K_{n}} d t,
\end{array}
$$

$$
=O\left(\frac{1}{t}\right)
$$

the $\left(N, p_{n}\right)$ transform of $\overline{s_{n}}(f ; x)$ using (1.2) is given by

This proves the lemma.
5. Proof of theorem- 3.1:

$$
t_{n}-f(x)=\frac{2}{\pi P_{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} p_{k} \frac{\cos \frac{t}{2}-\sin \left(n+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} d t,
$$

Using Riemann - Lebesgue theorem,
we have for the n-th partial sum $\bar{s}_{n}(f ; x)$ of denoting the $(E, q)\left(N, p_{n}\right)$ transform of the conjugate Fourier series (1.10) of $f(x), \quad \overline{s_{n}}(f ; x)$ by τ_{n}, we have ${ }^{5}$
$\left\|\tau_{n}-f\right\|=\frac{2}{\pi(1+q)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2}-\sin \left(v+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)}\right\} d t$

$$
\begin{align*}
& =\int_{0}^{\pi} \psi(t) \overline{K_{n}}(t) d t \\
& =\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \psi(t) \overline{K_{n}}(t) d t \\
& =I_{1}+I_{2}, \text { say } \tag{5.1}
\end{align*}
$$

Now

$$
\begin{aligned}
\left|I_{1}\right| & \left.=\left.\frac{2}{\pi(1+q)^{n}}\right|_{0} ^{1 / n+1} \psi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}\right\} d t \right\rvert\, \\
& \leq\left|\int_{0}^{\frac{1}{n+1}} \psi(t) \overline{K_{n}}(t) d t\right| \\
& \left.=\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{\phi(t)}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}} \int_{0}^{\frac{1}{n+1}}\left(\xi(t) \bar{K}_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}}, \text { using Holder's inequality } \\
& =O(1)\left(\int_{0}^{\frac{1}{n+1}} \xi(t) n^{s} d t\right)^{\frac{1}{s}} \quad=O\left(\frac{\left.\xi\left(\frac{1}{n+1}\right) \frac{1}{(n+1)^{\frac{1}{s}-1}}\right)}{}\right. \\
& =O\left(\xi\left(\frac{1}{n+1}\right)\right)\left(\frac{n^{s}}{n+1}\right)^{\frac{1}{s}} \quad=O\left(\xi\left(\frac{1}{n+1}\right) \frac{1}{(n+1)^{-\frac{1}{r}}}\right)
\end{aligned}
$$

$$
\begin{equation*}
=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right) \tag{5.2}
\end{equation*}
$$

Next

$$
\left|I_{2}\right| \leq\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\phi(t)}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}
$$

$$
\left(\int_{\frac{1}{n+1}}^{\pi}\left(\xi(t) \bar{K}_{n}(t)\right)^{s} d t\right)^{\frac{1}{s}}
$$

using Holder's inequality

$$
\begin{aligned}
&=O(1)\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t)}{t}\right)^{s} d t\right)^{\frac{1}{s}}, \text { using Lemma } 4.1 \\
&=O(1)\left(\int_{\frac{1}{\pi}}^{n+1}\left(\frac{\xi\left(\frac{1}{y}\right)}{\frac{1}{y}}\right)^{s} \frac{d y}{y^{2}}\right)^{\frac{1}{s}}
\end{aligned}
$$

Since $\xi(t)$ is a positive increasing function, so is $\xi(1 / y) /(1 / y)$. Using second mean value theorem we get

$$
=O\left((n+1) \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\delta}^{n+1} \frac{d y}{y^{2}}\right)^{\frac{1}{s}}, \text { for some }
$$

$$
\begin{aligned}
\frac{1}{\pi} \leq \delta & \leq n+1 \\
& =O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)
\end{aligned}
$$

Then from (5.2) and (5.3), we have

$$
\begin{aligned}
& \left|\tau_{n}-f(x)\right|=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right) \text {,for } r \geq 1 \\
& \left\|\tau_{n}-f(x)\right\|_{\infty}=\sup _{-\pi<x<\pi}\left|\tau_{n}-f(x)\right| \\
& \quad=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1
\end{aligned}
$$

This completes the proof of the theorem.

References

1. Hardy, G.H., Divergent series, First edition, Oxford University press 70 (19).
2. Misra, U.K., Misra, M., Padhy, B.P. and Buxi, S.K., On degree of approximation by product means of conjugate series of Fourier series", International Jour. of Math. Sciences, and Engineering Applications, ISSN 0973-9424, Vol. 6 No.122, pp 363 - 370 (Jan. 2012).
3. Paikray, S.K., Misra, U.K., R.K. Jati and Sahoo, N. C., On degree of Approximation of Fourier series by product means, Accepted for publication in Bull. of Society for Mathematical Services and Standards ISSN 2277-8020.
4. Titchmarch, E.C., Thetheory of functions, oxford university press, p. p402-403(1939).
5. Zygmund, A ., Trigonometric Series, second Edition, Vol. I., CambridgeUniversity press, Cambridge, (1959).
