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Abstract

In this paper a theorem on degree of approximation by product
summability (E, q)( N, pn) of the conjugate series of the Fourier

series of the function f of class Lip(é(t),r).
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1. Introduction n
P = Z P, > ®asn—oo, (P, =p, =0,

v=0
Let Zan beagiveninfiniteserieswith  j > 0). (1.1)

the sequence of partial sums {5, }. Let {p.} The sequence —to-sequence transformation

n

be a sequence of positive real numbers such _ i

- b= Z; Py S, (1.2)
L=

n
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defines the sequence {t,, } of the (N, p, - mean

of the sequence {sn} generated by the sequence

of coefficient {pn}. If

t, —>s ,as N—>o, (1.3)

then the series Y a, is said to be (N,p,)
summable tos.

The conditions for regularity of (N, p, }

summability are easily seen’ to be

(i) Pr 50, 850>

n

(ii )Zn: p.=0O(P)), as n—>oo'(1'4)

k=0

The sequence—to-sequence transformation?,

1 &M o
Tn:—Z(jq S, ,(L5)

(1+ Q)n v=0 v

defines the sequence {T, } of the (E, q) mean

of the sequence {sn}.
If
T,—>s,as nN—>wo, (1.6)

then the series Zan is said to be (E,q)

summable to s.
Clearly (E,q) method is regular. Further, the

(E,q) transform of the (N, p, ) transform of
{s,} is defined by
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T, —>S , aS

then Y a, is said to be (E,q) (N,p,)-
summable to s.

n—>wo, (1.8)

Let f (t) be a periodic function with
period 2r and L-integrable over (-mt,m). The
Fourier series associated with f at any point “x”
is defined by

f(x) ~ a—2°+i(an cosnx +b,
n=1

(1.9)

sinnx) = i A (X)

and the conjugate series of the Fourier series
(1.9)is

0

> (b, cosnx—a, sinnx) = i B, (X)1.10)
n=1

n=1

LetS, ( f; X) be the n-th partial sum of (1.10).

The L,-norm of a function f :R > R is
defined by
I, :sup{j f(x):xeR } (1.12)

and the L, -norm is defined? by
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1
2 ;
£, :U“(X)‘U] ,o>1.  (1.12)
0

The degree of approximation of a function
f :R — R by a trigonometric polynomial

P, (x) of degree n under norm|| . | is defined
by [5].

[P, - ], =sup{p, () f(x)|:x e R }(1.13)
and the degree of approximation E_(f) of a

function f € L, isgiven by

En(f):mpin”P“_f o (1.14)

Afunction f is said to satisfy Lipschitz condition

(here after we write f eLLipa) if
f(x+1)— f(x)|=0[(") 0<a <1,115)
and f(X) € Lip(a,r),for 0<x<2r, if

ﬁ\ f(x+t)— F () dxjr =0l .

O<a<lr>1,t>0. (1.16)

For a given positive increasing function & (t),

the function f (x) e Lip(f(t),r), if

0

(T|f(x+t)— f(x)[ dxjr =0(&(1))

r>1, t>0 (1.17)
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We use the following notation throughout
this paper:
We use the following notation throughout this
paper :

O =+ )-Fx-0) ws)

and

a Gt
COs_—cCos| v+ |t
2 2

6in b (1.19)
2

Further, themethod (E,q)(N, p, ) is assumed
to be regular.

2. Known Theorem:

Dealing with The degree of approxi-
mation by the product mean Misra et al.?

proved the following theorem using (E,q)

(N, pn) mean of conjugate series of Fourier
series :

Theorem 2.1:

Iffisa 2,7 — periodic function of class Lip«,
then degree of approximation by the product
(E, q)(ﬁ, P, )summability means of the conjugate
series (1.10) of the Fourier series (1.9) is given
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1

o e 1, -0 4
11 =0

O<axl
n+1)“j

where 7, is as defined in (1.7).

Very recently Paikray et al.® established
a theorem on degree of approximation by the

product mean (E, q)(ﬁ, pn) of the conjugate
series of Fourier series of a function of class

Lip (e,r). They prove:

Theorem 2.2:
If fisa 2n— Periodic function of class

Lip (e, ), then degree of approximation by

the product (E,q)(ﬁ, pn) summability
means of on he conjugate series (1.10) of the

Fourier series (1.9) is given by
e~ f], =0| — 2| 0<a <L r21
(n+1)“r '

where is as defined in (1.7).
3. Main theorem:

In this paper, we have proved a theorem
on degree of approximation by the product

_ 1 n
‘Kn(t)‘_ﬂ(l—

+ q)” k=0
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mean (E,q)(N, p,) of the conjugate series
of the Fourier series of a function of class

Lip (£(t),r). We prove:

Theorem 3.1:
Let &(t) bea positive increasing function
and f a 2n— Periodic function of the class

Lip(f(t),r), r>1t>0. Then degree of

approximation by the product ( E, q)(N, p,)

summability means on the conjugate series
(1.10) of the Fourier series (1.9) is given by

1 1
-f| =0 D&l — || ,r2l.
Ir.- 11, (<n+ ) s(mjj r
where 7, is as defined in (1.7).

4. Required Lemmas:

We require the following Lemmas to
prove the theorem.

Lemma 4.1:

K, (0] =0 :

0t ——.
n+

Proof:

For Ogtgi, we have sinnt £nsint
n+1

then

o)
Cos_——cos|v+_ |t
2 2

sin —
2
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<—= Zpku

t t . ot

1 n K Cos——cosvt.cos—+sinovt.sin —

< [ j 2 2 2
7r(1+q)” k=0 P = Sil’ll

cos | 2sin?o &
1 n (nj 1 2 2) .
< - 9" =D +sinot
7[(1+q) o\ K Pk v=0 sin—
2
1 (N .t t .
— Py 2sinv— smu—jﬂ)smt}
”(1+Q) ;(kj { kuzt; - ( ( 2 2

kL)O

s—= > { > .. (0 (v))H

1 ) L O(K) &
v=0

7z(1+q)" k=0 R
=0(n)
This proves the lemma.
Lemma-4.2:
1
K, (t)|=0 ( j for —<t<rm
n+1

Proof:

1 [t t
For ——<t<x,byJordan’s lemma, we have SIH(E) 2 pup

n+1
Then

.t
sin —
2

t 1
; ) COS ~—Cos| v+ |t
( ] n—k iz 2 2

_ 1
| KAt)\—W



506

1
< n
7(1+q)

n
k=0

) 2(1+q)"t

1
t

This proves the lemma.

5. Proof of theorem- 3.1:
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t t t .t .t
COS~—COSv _.COS_ +SINv _.SIN
2 2 2 2 2

.t
sin—
2

following Titchmarch®
s (F0)- 100 =2 [y K, dt,
T 0

the (N, p,) transform of s_(f;x) using
(1.2) is given by
t [n+1) t
2\ 2y

, & n cosE—sin
= 00 =—2-[v®OX oy t
Ty k= Zsin[gj

t

Using Riemann — Lebesgue theorem,

we have for the n-th partial

the conjugate Fourier series (1.10) of f(X),

V4

Jv

0

2

oo = = ———=
7(1+q)

sum 5, (%) of denoting the (E,q)(N, p,) transform of

s, (f;x) by z,, we have®

n

>

k=0

t . 1
cosz—sm(u+2] t
dt

=0

n—k 1 <
q FZ pk—u

k v=0

o
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T

= [w(®) K, ()t

0

n+l T

= [+ [ O KO d

0 1

n+1

=1, +1,, say (5.1)
Now

ia Gt
Cos ——cos| v+ _ |t
2 2

%Jrl n k
2 n 1
_ - [ v ( ]q =2 Py d
1 7(1+9) !W P kaz—(; k Zsin;

<| v Kwa
- I[%j dt I(f(t)Kn (t)) dt | | using Holder’s inequality

1 1

L | 5 ( 1 j 1
=0(@) .([f(t)ndt [é n+1 (n+1)%_1 '

:o(g(nilmnﬂ:j -© é(nilj(n+ll)i
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- O((n +1) g(ﬁ]} -
Next
S |
| < LACH R P
| I g (t)

[ (£ K, @) at|

n+1

using Holder’s inequality
0N
=0@) J~ [T dt | using Lemma 4.1

1
n+l

|
O
~
e
=)
'—._‘«’__‘

i
7 N\
< |~
N—

w

o

<
w

Since &(t) is a positive increasing function,
sois&(1/y)/(1/y). Using second mean value
theorem we get

-o{imens(Z)| 1

[ZRN=

, for some
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l£6£n+1

i3]

Then from (5.2) and (5.3) , we have
1 1
—f =0 Hrél —
T, (X)‘ [(n+ ) §(n+1D,forr >1.

r,—f (X)‘

=O((n+1)i§(ﬁn 1

This completes the proof of the theorem.

r —f (x)HOo = sup
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