Approximation of conjugate series of a fourier series by product summability

MAHENDRA MISRA¹, B.P. PADHY², N.K. PANDA³ and U.K.MISRA⁴

(Acceptance Date 20th November, 2012)

Abstract

In this paper a theorem on degree of approximation by product summability $(E,q)(N,p_n)$ of the conjugate series of the Fourier series of the function f of class $Lip(\xi(t),r)$.

Key words: Degree of Approximation, $Lip(\alpha,r)$ class of function, $Lip(\xi(t),r)$ class of function, (E,q)- mean, (N,p_n) -mean, $(E,q)(N,p_n)$ -mean, Fourier series, conjugate of the Fourier series, Lebesgue integral.

2010-Mathematics subject classification: 42B05, 42B08.

1. Introduction

Let $\sum a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ be a sequence of positive real numbers such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty, \text{as } n \to \infty, (P_{-i} = p_{-i} = 0, i \ge 0).$$
 (1.1)

The sequence -to-sequence transformation

$$t_n = \frac{1}{P_n} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} , \qquad (1.2)$$

defines the sequence $\{t_n\}$ of the (N, p_n) - mean of the sequence $\{s_n\}$ generated by the sequence of coefficient $\{p_n\}$. If

$$t_n \to s$$
 , as $n \to \infty$, (1.3)

then the series $\sum a_n$ is said to be (N, p_n) summable to s .

The conditions for regularity of (N, p_n) summability are easily seen¹ to be

$$\begin{cases} (i) & \frac{p_n}{P_n} \to 0, \text{ as } n \to \infty \\ (ii) & \sum_{k=0}^{n} p_k = O(P_n), \text{ as } n \to \infty \end{cases}$$
 (1.4)

The sequence–to-sequence transformation¹,

$$T_{n} = \frac{1}{(1+q)^{n}} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} s_{\nu} , (1.5)$$

defines the sequence $\{T_{\scriptscriptstyle n}\}$ of the $\left(E,q\right)$ mean of the sequence $\left\{s_{\scriptscriptstyle n}\right\}.$

If

$$T_n \to s$$
, as $n \to \infty$, (1.6)

then the series $\sum a_n$ is said to be (E,q) summable to s.

Clearly (E,q) method is regular. Further, the (E,q) transform of the (N,p_n) transform of $\{s_n\}$ is defined by

$$\tau_n = \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} T_k$$

$$= \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{v=0}^k p_v s_v \right\} (1.7)$$

I

$$\tau_n \to s$$
 , as $n \to \infty$, (1.8)

then $\sum a_n$ is said to be (E,q) (N, p_n) summable to s.

Let f(t) be a periodic function with period 2π and L-integrable over $(-\pi,\pi)$. The Fourier series associated with f at any point "x" is defined by

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n)$$

$$\sin nx = \sum_{n=0}^{\infty} A_n(x) , \qquad (1.9)$$

and the conjugate series of the Fourier series (1.9) is

$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} B_n(x), (1.10)$$

Let $\overline{S}_n(f;x)$ be the n-th partial sum of (1.10).

The L_{∞} -norm of a function $f: R \to R$ is defined by

$$||f||_{\infty} = \sup \{|f(x)| : x \in R \}$$
 (1.11)

and the L_v -norm is defined by

$$||f||_{\upsilon} = \left(\int_{0}^{2\pi} |f(x)|^{\upsilon}\right)^{\frac{1}{\upsilon}}, \ \upsilon \ge 1.$$
 (1.12)

The degree of approximation of a function $f: R \to R$ by a trigonometric polynomial $P_{\scriptscriptstyle n}(x)\, {\rm of\, degree}\, {\rm n}\, {\rm under}\, {\rm norm} \big\| \, . \, \big\|_{\scriptscriptstyle \infty}\, \, {\rm is}\, \, {\rm defined}\,$ by [5].

$$||P_n - f||_{\infty} = \sup\{|p_n(x) - f(x)| : x \in R\}$$
 (1.13)
and the degree of approximation $E_n(f)$ of a function $f \in L_0$ is given by

$$E_n(f) = \min_{P_n} \|P_n - f\|_{v} . \tag{1.14}$$

A function f is said to satisfy Lipschitz condition (here after we write $f \in Lip\alpha$) if

$$|f(x+t) - f(x)| = O(|t|^{\alpha}), 0 < \alpha \le 1, (1.15)$$

and $f(x) \in Lip(\alpha, r)$, for $0 \le x \le 2\pi$, if

$$\left(\int_{0}^{2\pi} \left| f(x+t) - f(x) \right|^{r} dx \right)^{\frac{1}{r}} = O\left(\left| t \right|^{\alpha}\right),$$

$$0 < \alpha \le 1, \ r \ge 1, \ t > 0. \tag{1.16}$$

For a given positive increasing function $\xi(t)$, the function $f(x) \in Lip(\xi(t),r)$, if

$$\left(\int_{0}^{2\pi} |f(x+t) - f(x)|^{r} dx\right)^{\frac{1}{r}} = O(\xi(t)), \quad \text{If } f \text{ is a } 2\pi - \text{periodic function of class } Lip \alpha, \\ (E,q)(\overline{N}, p_n) \text{ summability means of the conjugate}$$

$$r \ge 1, t > 0 \quad (1.17) \quad \text{series } (1.10) \text{ of the Fourier series } (1.9) \text{ is given}$$

We use the following notation throughout

We use the following notation throughout this

$$\psi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \}, \quad (1.18)$$
and

$$\overline{K}_{n}(t) = \frac{1}{\pi (1+q)^{n}} \sum_{k=0}^{n} {n \choose k} q^{n-k} \begin{cases} \frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \\ \frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \end{cases}$$

$$\frac{\cos\frac{t}{2} - \cos\left(\upsilon + \frac{1}{2}\right)t}{\sin\frac{t}{2}}$$
 (1.19)

Further, the method $(E,q)(N,p_n)$ is assumed to be regular.

2. Known Theorem:

Dealing with The degree of approximation by the product mean Misra et al.2 proved the following theorem using (E,q) (\overline{N}, p_n) mean of conjugate series of Fourier series:

Theorem 2.1:

If f is a 2π – periodic function of class $Lip \alpha$, $(E,q)(\overline{N},p_n)$ summability means of the conjugate series (1.10) of the Fourier series (1.9) is given

by
$$\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right)$$
, $0 < \alpha < 1$

where τ_n is as defined in (1.7).

Very recently Paikray $et~al.^3$ established a theorem on degree of approximation by the product mean $(E,q)(\overline{N},p_n)$ of the conjugate series of Fourier series of a function of class $Lip~(\alpha,r)$. They prove:

Theorem 2.2:

If f is a 2π -Periodic function of class $Lip(\alpha,r)$, then degree of approximation by the product $(E,q)(\overline{N},p_n)$ summability means of on he conjugate series (1.10) of the Fourier series (1.9) is given by

$$\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha+\frac{1}{r}}}\right), 0 < \alpha < 1, r \ge 1,$$

where is as defined in (1.7).

3. Main theorem:

In this paper, we have proved a theorem on degree of approximation by the product

mean $(E,q)(N,p_n)$ of the conjugate series of the Fourier series of a function of class $Lip(\xi(t),r)$. We prove:

Theorem 3.1:

Let $\xi(t)$ be a positive increasing function and f a 2π - Periodic function of the class $Lip(\xi(t),r), \ r \ge 1, t > 0$. Then degree of approximation by the product $(E,q)(N,p_n)$ summability means on the conjugate series (1.10) of the Fourier series (1.9) is given by $\|\tau_n - f\|_{\infty} = O\left((n+1)^{\frac{1}{r}}\xi\left(\frac{1}{n+1}\right)\right), r \ge 1$. where τ_n is as defined in (1.7).

4. Required Lemmas:

We require the following Lemmas to prove the theorem.

Lemma 4.1:

$$\left| \overline{K}_n(t) \right| = O(n)$$
 , $0 \le t \le \frac{1}{n+1}$.

Proof:

For $0 \le t \le \frac{1}{n+1}$, we have $\sin nt \le n \sin t$ then

$$\left| \overline{K}_{n}(t) \right| = \frac{1}{\pi \left(1 + q \right)^{n}} \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2} \right) t}{\sin \frac{t}{2}} \right\}$$

$$\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \right| \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2} - \cos \nu t \cdot \cos \frac{t}{2} + \sin \nu t \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}} \right\} \\
\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \right| \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \left(\frac{\cos \frac{t}{2} \left(2 \sin^{2} \nu \frac{t}{2} \right)}{\sin \frac{t}{2}} + \sin \nu t \right) \right\} \\
\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \left(O\left(2 \sin \nu \frac{t}{2} \sin \nu \frac{t}{2} \right) + \nu \sin t \right) \right\} \right| \\
\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \left(O\left(\nu \right) + O\left(\nu \right) \right) \right\} \right| \\
\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \left(O\left(\nu \right) + O\left(\nu \right) \right) \right\} \right| \\
\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{O(k)}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \left(O\left(\nu \right) + O\left(\nu \right) \right) \right\} \right| \\
= O(n)$$

This proves the lemma.

Lemma-4.2:

$$\left| \overline{K}_n(t) \right| = O\left(\frac{1}{t}\right), \text{ for } \frac{1}{n+1} \le t \le \pi$$

Proof:

For
$$\frac{1}{n+1} \le t \le \pi$$
, by Jordan's lemma, we have $\sin\left(\frac{t}{2}\right) \ge \frac{t}{\pi}$.

Then

$$\left| \overline{K}_{n}(t) \right| = \frac{1}{\pi \left(1+q\right)^{n}} \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right)t}{\sin \frac{t}{2}} \right\}$$

$$\begin{aligned}
&= \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2} - \cos \nu \frac{t}{2} \cdot \cos \frac{t}{2} + \sin \nu \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}} \right\} \right| \\
&\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} \frac{\pi}{2t} p_{k-\nu} \left(\cos \frac{t}{2} \left(2 \sin^{2} \nu \frac{t}{2} \right) + \sin \nu \frac{t}{2} \cdot \sin \frac{t}{2} \right) \right\} \right| \\
&\leq \frac{\pi}{2\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right| \\
&= \frac{1}{2 (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right| \end{aligned}$$

$$= \frac{1}{2(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \right| \qquad \text{following Titchmarch}^4$$

$$= \frac{1}{2(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \right| \qquad \frac{1}{s_n} (f;x) - f(x) = \frac{2}{\pi} \int_0^{\pi} \psi(t) \overline{K_n} dt,$$

$$= O\left(\frac{1}{t}\right). \qquad \text{the } (N, p_n) \text{ transform of } \overline{s_n}(f;x) \text{ using}$$

$$(1.2) \text{ is given by}$$

This proves the lemma.

5. Proof of theorem- 3.1:

Using Riemann – Lebesgue theorem, we have for the n-th partial sum $\overline{s}_n(f;x)$ of the conjugate Fourier series (1.10) of f(x),

$$\overline{s_n}(f;x) - f(x) = \frac{2}{\pi} \int_0^{\pi} \psi(t) \ \overline{K_n} \ dt,$$

the (N, p_n) transform of $\overline{s_n}(f; x)$ using (1.2) is given by

$$t_n - f(x) = \frac{2}{\pi P_n} \int_0^{\pi} \psi(t) \sum_{k=0}^n p_k \frac{\cos \frac{t}{2} - \sin \left(n + \frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} dt,$$

denoting the $(E,q)(N,p_n)$ transform of $\overline{s}_n(f;x)$ by τ_n , we have⁵

$$\|\tau_{n} - f\| = \frac{2}{\pi (1+q)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2} - \sin \left(\nu + \frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} \right\} dt$$

$$= \int_{0}^{\pi} \psi(t) \overline{K_{n}}(t) dt$$

$$= \left\{ \int_{0}^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\pi} \right\} \psi(t) \overline{K_{n}}(t) dt$$

$$= I_{1} + I_{2}, say$$
(5.1)

Now

$$\begin{aligned} |I_{1}| &= \frac{2}{\pi \left(1+q\right)^{n}} \left| \int_{0}^{1/n+1} \psi(t) \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} P_{k-\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \right\} dt \\ &\leq \left| \int_{0}^{\frac{1}{n+1}} \psi(t) |\overline{K_{n}}(t)| dt \right| \\ &= \left(\int_{0}^{\frac{1}{n+1}} \left(\frac{\phi(t)}{\xi(t)} \right)^{r} dt \right|^{\frac{1}{r}} \left(\int_{0}^{\frac{1}{n+1}} \left(\xi(t) |\overline{K_{n}}(t)|^{s} \right)^{s} dt \right)^{\frac{1}{s}}, \text{ using Holder's inequality} \\ &= O(1) \left(\int_{0}^{\frac{1}{n+1}} \xi(t) n^{s} dt \right)^{\frac{1}{s}} \\ &= O\left(\xi\left(\frac{1}{n+1} \right) \frac{1}{(n+1)^{\frac{1}{s-1}}} \right). \end{aligned}$$

$$&= O\left(\xi\left(\frac{1}{n+1} \right) \right) \left(\frac{n^{s}}{n+1} \right)^{\frac{1}{s}}$$

$$&= O\left(\xi\left(\frac{1}{n+1} \right) \frac{1}{(n+1)^{\frac{1}{r}}} \right)$$

$$= O\left(\left(n+1\right)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right) (5.2) \qquad \frac{1}{\pi} \le \delta \le n+1$$

Next

$$\left|I_{2}\right| \leq \left(\int_{\frac{1}{n+1}}^{\pi} \left(\frac{\phi\left(t\right)}{\xi\left(t\right)}\right)^{r} dt\right)^{\frac{1}{r}}$$

$$\left(\int_{\frac{1}{n+1}}^{\pi} \left(\xi(t)\overline{K}_n(t)\right)^s dt\right)^{\frac{1}{s}},$$

using Holder's inequality

$$= O(1) \left(\int_{\frac{1}{n+1}}^{\pi} \left(\frac{\xi(t)}{t} \right)^{s} dt \right)^{\frac{1}{s}}, \text{ using Lemma 4.1}$$

$$= O(1) \left(\int_{\frac{1}{\pi}}^{n+1} \left(\frac{\xi\left(\frac{1}{y}\right)}{\frac{1}{y}} \right)^{s} \frac{dy}{y^{2}} \right)^{\frac{1}{s}}$$

Since $\xi(t)$ is a positive increasing function, so is $\xi(1/y)/(1/y)$. Using second mean value theorem we get

$$= O\left((n+1)\xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\delta}^{n+1}\frac{dy}{y^2}\right)^{\frac{1}{s}}, for some$$

$$\frac{1}{\tau} \le \delta \le n+1$$

$$= O\left(\left(n+1\right)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)$$

Then from (5.2) and (5.3), we have
$$|\tau_n - f(x)| = O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right) \text{ for } r \ge 1.$$

$$||\tau_n - f(x)||_{\infty} = \sup_{-\pi < x < \pi} |\tau_n - f(x)|$$

$$= O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \ge 1.$$

This completes the proof of the theorem.

References

- 1. Hardy, G.H., Divergent series, First edition, Oxford University press 70 (19).
- 2. Misra, U.K., Misra, M., Padhy, B.P. and Buxi, S.K., On degree of approximation by product means of conjugate series of Fourier series", International Jour. of Math. Sciences, and Engineering Applications, ISSN 0973–9424, Vol.6 No.122, pp 363 – 370 (Jan. 2012).
- 3. Paikray, S.K., Misra, U.K., R.K. Jati and Sahoo, N. C., On degree of Approximation of Fourier series by product means, Accepted for publication in Bull. of Society for Mathematical Services and Standards ISSN 2277 - 8020.
- 4. Titchmarch, E.C., The theory of functions, oxford university press, p. p402-403(1939).
- 5. Zygmund, A., Trigonometric Series, second Edition, Vol. I., Cambridge University press, Cambridge, (1959).