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Abstract

In this paper a theorem on degree of approximation  by product
summability    , , nE q N p  of the conjugate series of the Fourier

series of the function f  of class   ,Lip t r .
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1. Introduction

Let  na be a given infinite series with

the sequence of partial sums  ns . Let  np
be a sequence of positive real numbers such
that
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defines the sequence   nt  of the  , nN p - mean

of the sequence   ns  generated by the sequence

of coefficient   np . If

 stn  , as  n ,  (1.3)

then the series   na is said  to be   , nN p
summable  to s .

        The conditions for regularity of  , nN p -

summability are easily seen1 to be
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The sequence–to-sequence transformation1,
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defines the sequence   nT  of the   qE,  mean

of the sequence   ns .
If

 sTn  , as  n ,  (1.6)

then the series   na is said to be (E,q)
summable to s.
Clearly (E,q) method is regular. Further, the

(E,q) transform of the  , nN p  transform of

  ns  is defined by
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If
 sn     , as  n ,    (1.8)

then   na is said to be   qE,   , nN p -
summable to s.

Let f (t) be a periodic function with
period 2 and L-integrable over (-,). The
Fourier series associated with f at any point “x”
is defined by
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and the conjugate series of the Fourier series
(1.9) is
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Let  ;ns f x be the n-th partial sum of (1.10).

The L-norm of a function RRf : is
defined by

  Rxxff 


:)(sup          (1.11)

and the  L -norm is defined2 by
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The degree of approximation of a function
 RRf :  by a trigonometric polynomial

 )(xPn of degree n under norm 


.  is  defined
by [5].

  RxxfxpfP nn 


:)()(sup (1.13)

and the degree of approximation  )( fEn  of a

function  Lf  is given by
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A function f is said to satisfy Lipschitz condition

(here after we write Lipf  ) if

   10,)()(  tOxftxf ,(1.15)

and     ,f x Lip r , for   0 2x   , if
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For a given positive increasing function   t ,

the function      ,f x Lip t r , if
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( ) ( ) , 1, 0f x t f x dx O t r t      (1.17)

We use the following notation throughout
this paper:
We use the following notation throughout this
paper :
  ,)()(
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Further, the method    , , nE q N p  is assumed
to be regular.

2. Known Theorem:

Dealing with The degree of approxi-
mation by the product mean Misra et al.2

proved the following theorem using   qE,

 npN ,  mean of conjugate series of Fourier
series :

Theorem 2.1:

If f is a  2 periodic function of class  Lip ,
then degree of approximation by the product
   npNqE ,,  summability  means of the conjugate
series (1.10) of the Fourier series (1.9) is given



by 
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where  n  is as defined in (1.7).

         Very recently Paikray et al.3 established
a theorem on degree of approximation by the

product mean    npNqE ,,  of the conjugate
series of Fourier series of a function of class
  ,Lip r . They prove:

Theorem 2.2:
If  f is a 2 Periodic function of class

  ,Lip r , then degree of approximation by

the product    npNqE ,,  summability

means of on he conjugate series (1.10) of the
Fourier series (1.9) is given by
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where is as defined in (1.7).

3. Main theorem:

In this paper, we have proved a theorem
on degree of approximation by the product

mean    , , nE q N p  of the conjugate series
of the Fourier series of a function of class
   ,Lip t r . We prove:

Theorem 3.1:
       Let   t  be a positive increasing function
and f a 2 Periodic function of the class
   , , 1, 0Lip t r r t   . Then degree of

approximation by the product    , , nE q N p
summability means on the conjugate series
(1.10) of the  Fourier series (1.9) is given by
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where  n is as defined in (1.7).

4. Required Lemmas:

We require the following Lemmas to
prove the theorem.

Lemma 4.1:
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Proof:

For 
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This proves the lemma.

Lemma-4.2:
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This proves the lemma.

5. Proof of theorem- 3.1:

Using Riemann – Lebesgue theorem,

we have for the n-th partial sum   ;ns f x  of

the conjugate  Fourier series (1.10) of )(xf ,

following  Titchmarch4
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  xfsn ;   by  n , we have5
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Since   t  is a positive increasing function,

so is    1/ / 1/y y . Using second mean value
theorem we get
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This completes the proof of the theorem.
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