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Abstract

Within this paper properties of topological spaces for which
open, onto functions and closed, onto functions are equivalent are
investigated and the results are used to further characterize such spaces.
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Introduction

1. Questions and Direction: Within a
summer 2007 graduate level topology class, the
students were asked to prove or disprove the
open image of a T0 topological space is T0.
The students believed the statement to be false
and repeatedly, without success, attempted to
use a finite T0 space to create a counterexample.
Thus the following question arose. “Is the open
image of a finite T0 space T0?” The answer
proved to be “yes.”

Theorem 1.1. Let X be a nonempty
set. Then X is finite iff for each topology T on
X for which (X,T) is T0, each open image of
(X,T) is T0 

1.

In a similar manner, open images and
other separation axioms have been used to

obtain many additional topological characteri-
zations of nonempty, finite sets 2.

In February 2012, the focus of the study
moved from open images to closed images and
many additional topological characterizations
of nonempty, finite sets were obtained using
closed images and separation axioms3.

By the nature of the initial questions, all
topologies on a set satisfying certain properties
had to be considered. In a follow-up paper to
the paper cited immediately above, the focus
moved from all topologies satisfying certain
properties to just one topology satisfying certain
properties and the following result was
obtained.

Theorem 1.2. Let (X,T) be a space.
Then T= P(X), the power set of X, iff (X,T) is
T1 and an onto function f from (X,T) to a space
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(Y,S) is open iff it is closed4.

Also, in the follow-up paper4, the R0

separation axiom was used to further examine
the new focus.

Definition 1.1. A space (X,T) is R0

iff for each closed set C in X and each x C,
CCl({x}) =  9.

Theorem 1.3. Let (X,T) be a space.
Then the following are equivalent: (a) T = P(X)
or T is the indiscrete topology on X and (b)
(X,T) is R0 and an onto function f from (X,T)
to a space (Y,S) is open iff it is closed4.

The results above raised questions
about other spaces for which an open, onto
function equals a closed, onto function and led
to the introduction and investigation of onto
functionally open equal closed spaces5.

Definition 1.2. A space (X,T) is onto
functionally open equal closed (ofoec) iff for
each space (Y,S) for which there is a function
f from (X,T) onto (Y,S), f is open iff it is
closed5.

The introduction of ofoec spaces raised
questions about the properties of such spaces.
For example: “What about subspaces of ofoec
spaces?” “What about image of ofoec
spaces?” “What about product spaces of ofoec
spaces?” These questions and others will be
addressed within this paper and additional
characterizations of ofoec spaces will be given.

2. Properties of OFOEC Spaces. If
for a space (X,T) for which an open, onto

function is equivalent to a closed, onto function,
must the same be true for a nonempty subset
Y of X with the subspace topology TY? With only
the definition of ofoec spaces such a question
is overwhelming. Fortunately, within the paper
cited above in which ofoec spaces were defined5,
a precise, descriptive characterization of ofoec
spaces was obtained, making the task concerning
subspaces doable.

Theorem 2.1. A space (X,T) is ofoec
iff T= P(X) or T is the indiscrete topology on
X or X has two distinct elements x and y and
T= { ,X,{x}} or T= { ,X,{y}} 5.

Theorem 2.2. Let (X,T) be a space.
Then (X,T) is an ofoec space iff each nonempty
subspace (Y,TY) is ofoec.

Proof: Suppose (X,T) is ofoec. Let Y
be a nonempty subset of X. If T= P(X), then
TY= P(Y) and (Y,TY) is ofoec. If T is the
indiscrete topology on X, then TY is the
indiscrete topology on Y and (Y,TY) is ofoec.
If X= {x,y}, x not y, and T= { ,X,{x}}, then
Y= X or Y is a singleton set and, in either case
(Y,TY) is ofoec.

The converse follows immediately
since (X,T) is a subspace of itself.

Combining Theorem 2.2 with the
definition of ofoec spaces gives the next result.

Corollary 2.1. A space (X,T) is ofoec
iff for each subspace (Y,TY) of (X,T), for each
function f from (Y,TY) onto a space (Z,W), f
is open iff it is closed.
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Theorem 2.3. Let (X,T) be a space.
Then the following are equivalent: (a) (X,T) is
ofoec, (b)  T is the indiscrete topology on X or
each open image (Y,S) of (X,T) is ofoec, and
(c) T is the indiscrete topology on X or each
closed image (Y,S) of (X,T) is ofoec.

Proof: (a) implies (b): If T is the
indiscrete topology on X, then (a) implies (b).
Thus consider the case that T is not the
indiscrete topology on X. If T= P(X), then for
each open image (Y,S) of (X,T), singleton sets
are open in (Y,S), which implies S= P(Y) and
(Y,S) is ofoec. Thus consider the case where
X={x,y}, where x and y are distinct, and
T= { ,X,{x}}.

Let (Y,S) be an open image of (X,T).
If Y is a singleton set, then (Y,S) is ofoec. Thus
consider the case Y is a doubleton set. Let f
be an open function from (X,T) onto (Y,S).
Then S={ ,Y,{f(x)}}or S={ ,Y,{f(x)}, {f(y)}}
and, in either case (Y,S) is ofoec.

(b) implies (c): If T is the indiscrete
topology on X, then (b) implies (c). Thus
consider the case that T is not the indiscrete
topology on X. Let (Y,S) be a closed image of
(X,T). Since the identity function from (X,T)
onto itself is open, then (X,T) is ofoec. Since
(Y,S) is a closed image of (X,T), (Y,S) is an
open image of (X,T) and (Y,S) is ofoec.

(c) implies (a): If T is the indiscrete
topology on X, then (X,T) is ofoec. Thus
consider the case that T is not the indiscrete
topology on X. Since the identity function from
(X,T) onto itself is closed and onto, (X,T) is
ofoec.

Theorem 2.4. Let (X,T) be a space.
Then (a) (X,T) is ofoec iff (b) for each open
function f from (X,T) into a space (Y,S), the
function f from (X,T) onto (f(X),Sf(X)) is open,
closed, and for each closed function g from
(X,T) into a space (Z,W), the function g from
(X,T) onto (g(X),Wg(X)) is open, closed.

Proof: (a) implies (b): Let f be an open
function from (X,T) into a space (Y,S). Then f
is an open function from (X,T) onto (f(X),Sf(X))
and, since (X,T) is ofoec, f , a function from
(X,T) onto (f(X),Sf(X)), is open and closed.

In a similar manner, the remainder of
(b) can be proven.

(b) implies (a): If f is an open function
from (X,T) onto a space (Y,S), then f(X)= Y
and Sf(X)= S, which implies f is open and closed.
Similarly, if g is a closed function from (X,T)
onto (Z,W), g is closed and open. Hence (X,T)
is ofoec.

Theorem 2.5. Let (X,T) be a space.
Then the following are equivalent: (a) (X,T) is
ofoec, (b) T is the indiscrete topology on X or
for each space (Y,S) for which there is an open
function from (X,T) into (Y,S), (f(X),Sf(X)) is
an open ofoec subspace of (Y,S), and (c) T is
the indiscrete topology on X or for each space
(Z,W) for which there is a closed function g
from (X,T) into (Z,W), (g(X),Wg(X)) is a closed
ofoec subspace of (Z,W).

Proof: (a) implies (b): If T is the
indiscrete topology on X, (b) is proven. Thus
consider the case that T is not the indiscrete
topology on X.



Let (Y,S) be a space for which there
is an open function from (X,T) into (Y,S). Then
f(X) is open in (Y,S) and (f(X),Sf(X)) is an open
image of the ofoec space (X,T), which by
Theorem 2.3 implies (f(X),Sf(X)) is ofoec.

(b) implies (c): If T is the indiscrete
topology on X, then (b) implies (c). Thus
consider the case that T is not the indiscrete
topology on X.

Let (Z,W) be a space for which there
is a closed function g from (X,T) into (Z,W).
Then g(X) is closed in (Z,W) and (g(X),Wg(X))
is a closed image of (X,T) and, by Theorem
2.3, (g(X), Wg(X)) is ofoec.

(c) implies (a): If T is the indiscrete
topology on X, then (X,T) is ofoec. Thus
consider then case the T is not the indiscrete
topology on X. Thus consider the case that T
is not the indiscrete topology on X.

Since the identity function I from (X,T)
onto itself is closed, then (X,T)= (I(X),TI(X)) is
ofoec.

A useful topological tool for studying
properties of topological spaces has been, and
continues to be, T0-identification spaces.
Below the relationships between ofoec spaces
and T0-identification spaces are resolved.

Definition 2.1. Let r be the equivalence
relation on a space (X,T) defined by xry iff
Cl({x})= Cl({y}). The T0-identification space
of (X,T) is (X0,Q(X0)), where  X0 is the set of r
equivalence classes and Q(X0) is the decompo-
sition topology on X0 

10. Let P be the natural

map from (X,T) onto (X0,Q(X0)) and for each x
in X, let Cx be the r equivalence class containing
x.

Theorem 2.6. Let (X,T) be ofoec.
Then (X0,Q(X0)) is ofoec.

Proof: If T is the indiscrete topology
on X, then X0 is a singleton set and (X0,Q(X0))
is ofoec. Thus consider the case that T is not
the indiscrete topology on X. Since the natural
map P from (X,T) onto (X0,Q(X0)) is open6,
then by Theorem 2.3, (X0,Q(X0)) is ofoec.

The following example shows the
converse of Theorem 2.4 is not true.

Example 2.1. Let X= {a,b,c} and let
T= { ,X,{a,b}}. Then (X,T) is not ofoec, but
(X0,Q(X0)) is ofoec.

The discrete topology on a set with
three or more elements can be used to easily
show the continuous image of an ofoec space
need not be ofoec. However, such is not the
case for homeomorphisms.

Theorem 2.7. Onto functionally open
equals closed is a topological property.

Proof: Let (X,T) be ofoec and let f
be a homeomorphism from (X,T) onto a space
(Y,S). If T is the indiscrete topology on X, then
S is the indiscrete topology on Y and (Y,S) is
ofoec. If T is not the indiscrete topology on X,
then (Y,S) is an open image of the ofoec space
(X,T) and by Theorem 2.3, (Y,S) is ofoec. Hence
ofoec is a topological property.

The set X= {x,y} and T= { ,X,{x}}
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can be used to show the product of two ofoec
spaces need not be ofoec.

      3. Other Properties and Characterizations.
Alexandroff spaces were so named8 in 1982
in recognition of the initial work in the area
done by P. Alexandroff.

Definition 3.1. A space (X,T) is
Alexandroff iff T is closed under arbitrary
intersections8.

In 2010  Alexandroff 7 spaces were
further investigated and characterized and
strong Alexandroff spaces were introduced.

Theorem 3.1. Let (X,T) be a space
and let C(T) denote the family of closed sets
in (X,T). Then (X,T) is Alexandroff iff C(T) is
a topology on X 7.

In the work below, C(T) will be used
to denote the family of closed sets for a space
(X,T).

Definition 3.2. A space (X,T) is
strong Alexandroff iff T= C(T)7.

Below Alexandroff and strong Alexan-
droff spaces are used to further investigate
and characterize ofoec spaces.

Theorem 3.2. Let (X,T) be ofoec.
Then (X,T) is Alexandroff.

Proof: If T= P(X) or T is the indiscrete
topology on X, then (X,T) is both Alexandroff
and strong Alexandroff. If X= {x,y} and T=
{ ,X,{x}}, then C(T)= { ,X,{y}}, which is
a topology on X, and (X,T) is Alexandroff.

Theorem 3.3. Let (X,T) be ofoec.
Then (X,T) and (X,C(T)) are homeomorphic.

Proof: If T= P(X) or T is the indiscrete
topology on X, the identity function from (X,T)
onto (X,C(T))= (X,T) is a homeomorphism.
Thus consider the case that X= {x,y} and T=
{ ,X,{x}}. Then C(T)= { ,X,{y}} and the
function f from (X,T) onto (X,C(T)) defined
by f(x)= y and f(y)= x is a homeomorphism.

            Combining Theorem 2.7 with Theorem
3.3 gives the last result in this paper.

Corollary 3.1. Let (X,T) be a space.
Then (X,T) is ofoec iff (X,C(T)) is ofoec.

Theorem 3.4. Let (X,T) be a space.
Then (a) (X,T) is ofoec, strong Alexandroff
iff (b) T = P(X) or T is the indiscrete topology
on X.

Proof: (a) implies (b): Let C be closed
in X and let x  C. Then C is open and
Cl({x})  X\C. Hence (X,T) is R0, ofoec and
by Theorem 1.3, T= P(X) or T is the indiscrete
topology on X.

Clearly, from the results above, (b)
implies (a).

Thus the strong relationship between
openness and closedness used in the definition
of ofoec spaces is preserved when comparing
the open sets in the space with the closed sets
in the space.
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