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Abstract

A study of the effect of stratified Rivlin-Ericksen fluid on MHD
free convection flow past a vertical porous plate with heat and mass
transfer and neglecting induced magnetic field in comparison to applied
magnetic field is investigated. The velocity, temperature and
concentration distributions are derived and discussed numerically with
the helps of graphs and tables. It is observed that velocity increases
with the increase in Gr (Grashof number) and K (Permeability parameter),
but it decreases with the increase in M (Magnetic parameter). The
velocity increases with the increase in Visco-elastic parameter) up to
y = 2, then decreases.
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Introduction

The convection problem in a porous
medium has important applications in geo-
thermal reservoirs and geothermal extractions.
The process of heat and mass transfer is
encountered in aeronautics, fluid fuel nuclear
rector, chemical process industries and many
engineering applications in which the fluid is
the working medium. The wide range of
technological and industrial applications has
stimulated considerable amount of interest in
the study of heat and mass transfer in convection
flows. Free convective flow past a vertical

plate has been studied extensively by Ostrach9.
Siegel12 investigated the transient free convection
from a vertical flat plate. Cheng and Lau4 and
Cheng and Teckchandani5 obtained numerical
solutions for the convective flow in a porous
medium bounded by two isothermal parallel
plates in the presence of the withdrawal of the
fluid. In all the above mentioned studies, the
effect of porosity, permeability and the thermal
resistance of the medium is ignored or treated
as constant. However, porosity measurements
by Benenati and Broselow3 show that porosity
is not constant but varies from the surface of
the plate to its interior to which as a result
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permeability also varies. In case of unsteady
free convective flow, Soundalgekar14 studied
the effects of viscous dissipation on the flow past
an infinite vertical porous plate. The combined
effect of buoyancy forces from thermal and
mass diffusion on forced convection was
studied by Chen et al.6. The free convection
on a horizontal plate in a saturated porous medium
with prescribed heat transfer coefficient was
studied by Ramanaiah and Malarvizhi10. Bejan
and Khair2 have investigated the vertical free
convective boundary layer flow embedded in
a porous medium resulting from the combined
heat and mass transfer. Lin and Wu7 analyzed
the problem of simultaneous heat and mass
transfer with the entire range of buoyancy ratio
for most practical and chemical species in dilute
and aqueous solutions. Rushi Kumar and
Nagarajan11 studied the mass transfer effects
of MHD free convection flow of incompressible
viscous dissipative fluid past an infinite vertical
plate. Mass transfer effects on free convection
flow of an incompressible viscous dissipative
fluid have been studied by Manohar and
Nagarajan8. Sivaiah et al.13 studied heat and
mass transfer effects on MHD free convective
flow past a vertical porous plate. Recently,
Agrawal et al.1 have discussed the effect of
stratified viscous fluid on MHD free convection
flow with heat and mass transfer past a vertical
porous plate.

In the present section we have consi-
dered the problem of Agrawal et al.1 with
stratified Rivlin-Ericksen fluid.

Mathematical Analysis :

We study the two-dimensional free

convection and mass transfer flow of stratified
Rivlin-Ericksen fluid past an infinite vertical
porous plate under the following assumptions:

 The plate temperature is constant
 Visco-elastic and Darcy’s resistance terms

are taken into account with constant
permeability of the medium.

 Boussinesq’s approximation is valid.
 The suction velocity normal to the plate is

constant and can be written as,
1

0v U 
A system of rectangular co-ordinates

O (x1,y1,z1) is taken, such that y1 = 0 on the
plate and z1 axis is along its leading edge. All
the fluid properties considered constant except
that the influence of the density variation with
temperature is considered. The influence of
the density variation in other terms of the
momentum and the energy equation and the
variation of the expansion coefficient with
temperature is considered negligible. The
variations of density, viscosity, elasticity and
thermal conductivity are supposed to be of the
form

= oe
–b1y1

,     = oe
–b1y1

,  

  = oe
–b1y1

,   kT = koe
–b1y1



where o, o, o  and ko are the coefficients
of density, viscosity, elasticity and thermal
conductivity respectively at y= 0, b > 0
represents the stratification factor.

Under these conditions, the problem
is governed by the following system of
Equations:

Equation of continuity:
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Equation of Momentum:
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Equation of Energy:
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Equation of concentration:
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(4)

where 1 1u ,v  are the velocity components.

1 1T ,C  are the temperature and concentration

components,   is the kinematic viscosity, ρ is
the density, σ is the electric conductivity, B0 is
the magnetic induction, kT is the thermal
conductivity and D is the concentration
diffusivity, Cp is the specific heat at constant

pressure, 1
o  is the coefficient of visco-elastic

fluid.

The boundary conditions for the
velocity, temperature and concentration fields
are:

1 1 1 1 1
w wu 0,T T ,C C     at  1y 0

                                                                                                           (5)
1 1 1u 0,T T ,C C     at 1y 

Let us introduce the non-dimensional variables
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where rP  is the Prandtl number, rG is the

Grashof number, N 0  is the buoyancy ratio,  cS
is the Schmidt number, M is the magnetic
parameter, K is the permeability parameter, b
is the stratification parameter, o  is  the visco-
elastic parameter. Other physical variables
have their usual meaning.



Introducing the non-dimensional
quantities describes above, the governing
equations reduce to

r 0 o
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and the corresponding boundary conditions are

u 0, 1,C 1     at  y 0 (9)

u 0, 0,C 0     at   y 

Method of Solution :

We assume the solution of eq. (6), (7), (8) as
nt

0u(y, t) u (y)e ,

nt
0(y, t) (y)e   ,

nt
0C(y, t) C (y)e  (10)

Using eq.(10) in eq. (6), (7), (8) and we get
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Now the corresponding boundary conditions
are

0 0 0u 0, 1,C 1     at  y = 0

 
0 0 0u 0, 0,C 0     at   y  (14)

Equations (11) to (13) are ordinary linear
differential equations, now 0u , 0 and 0C  with
boundary conditions (14) are
 3 1 2m y m y m y
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                         (15)
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Hence, The equations for u,  and C will be as
follows

   3m y
1 2 1 3u y, t (A A )e A e A e e     

1 2m y m y m y nt
1 2 1 3u y, t (A A )e A e A e e         (18)

    1m y nty, t e e   (19)

   2m y ntC y, t e e  (20)

Skin Friction:

The skin friction coefficient at y = 0
is given by

 

 3 1 2 1 1 2 2
y 0

u m (A A ) m A m A e
y 

 
        

 nt
3 1 2 1 1 2 2m (A A ) m A m A e        (21)

Result and Discussion

Fluid velocity distribution of fluid flow
is tabulated in Table 1 and plotted in Fig. 1

having six graphs at Pr= 0.71, Sc = 0.4, n = 0.1,
t = 0.1, N0 = 1.5, b = 0.1  for following different
value of Gr, M, K and  

Gr M K 
For Graph-1 2 0.02 100 0.5
For Graph-2 4 0.02 100 0.5
For Graph-3 2 0.04 100 0.5
For Graph-4 2 0.02 1000 0.5
For Graph-5 2 0.02 100 2.0
For Graph-6 2 0.02 100 3.0

It is observed from Fig. 1 that all velocity
graphs are increasing sharply up to y = 1.2
after that velocity in each graph begins to
decrease and tends to zero with the increasing
in y. It is also observed from Fig.  1 that velocity
increases with the increase in Gr and K, but it
decreases with the increase in M. When on
increasing the value of  velocity increases
up to y = 2, then after it velocity decreases.

The temperature and concentration do
not change with the change in above parameters
taken for velocity.
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Table 1. Value of velocity u for Fig. 1 at Pr = 0.71, Sc = 0.4, n = 0.1,
t =0.1, N = 1.5, b = 0.1 and different values of Gr, M, K and 

y Graph 1 Graph  2 Graph 3 Graph 4 Graph 5 Graph 6
0       0       0       0      0      0      0
1 19.01812 38.04229 15.75076 21.34781 20.41984 21.30725
2 23.08858 46.18427 18.87094 25.99729 23.14461 22.94389
3 21.74672 43.49995 17.58977 24.55098 20.78498 19.97418
4 18.79249 37.59043 15.07953 21.26215 17.41203 16.44798
5 15.66661 31.33763 12.49684 17.75685 14.24134 13.33654

Table 2. Value of skin friction  for Fig. 2 at Pr = 0.71, Sc = 0.4, n = 0.1,
N0 = 1.5, b = 0.1 and different values of Gr, M, K and

  t Graph 1 Graph  2 Graph 3 Graph 4 Graph 5 Graph 6
  0 32.76920 65.54910 27.58090 36.65335 38.60740 43.49050
0.2 32.12033 64.25114 27.03476 35.92757 37.84292 42.62933
0.4 31.48430 62.97888 26.49944 35.21615 37.09358 41.78521
0.6 30.86087 61.73182 25.97471 34.51883 36.35908 40.95781
0.8 30.24978 60.50945 25.46038 33.83531 35.63912 40.14679
 1 29.65080 59.31128 24.95623 33.16532 34.93342 39.35183
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Fig. 2.

The skin friction distribution is tabulated in Table
2 and plotted in Fig.  2 having six graphs. It is
observed from Fig.  2 that skin friction increases
with the increase in Gr, K and , but it decreases
with the increase in M.

Particular case :

When  is equal to zero, this problem
reduces to the problem of Agrawal et al. (2012).

Conclusion

1. The velocity increases with the increase in
Visco-elastic parameter)  up  to y = 2,
then decreases.

2. The skin friction increases with the increase
in 
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