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Abstract

The object of this paper is to obtain an exact solution for the
simultaneous dual series equations involving the product of 'r' generalized
Batman- k functions by multiplying factor technique.
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1. Introduction

Dual series equations and triple integral
equations arise frequently in mixed boundary
value problems of Mathematical Physics. Here
solution of the following simultaneous dual
series equations has been discussed:

a    (x ) 

   = f      0 ≤ x  < y   (1.1)

  b     k  (x )   

   = g   , y  < x (1.2)

Where i= 1,2,......................,s and k+k

+1>0, k > k > k-  1/2mk, 2k+k+1>0, k

are negative integers and mk are non- negative
integersfor k= 1,2,...............,r.

k    is the generalized Batman- k function

defined by

= 

,            (1.3)
a   are known constants, fi(x1,x2,

……,xr) and
gi(x1,x2, ……,xr) are prescribed functions and
Anjk are unknown coefficients to be determined
for j= 1,2,.............s ; k= 1,2,................,r.
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2. Some useful Results :

The following results will be required
in our investigation. First of all, we recall the
following relationships1,8 for the particular case

 =  = 0, which exhibits the fact the
generalized Batman- k functions are the well
known confluent hyper geometric functions of
Whittaker Swatson (1963):

 k   (2.1)

From [2.1], it is easy to deduce the orthogonality property*,

 dx=   (2.2)

Where ++1>0 and mn is the kronecker delta.

Also    = 2                                                      (2.3)

Where m is a non- negative integer.
With the help of the relationship [2.1], one may readily obtain the following forms of the known
integrals4:

         (2.4)

Where      and

 

  =      [2.5]

Where 2++n+1> >0
*Throughout this paper   will be understood to take on negative integral values2-5.
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3. Solution of the equations :

Multiplying equation [1.1 ] by e   , where mk

are non- negative integers and equation [1.2] by

e  and then integrating equations [1.1]

and [1.2] with respect to xk 'r' times over (0,k) and (k,)  respectively. On using formulas
[2.4] and [2.5], we find

= П   e  

            f   (3.1)

Where 0 <  < y ,  2 , i= 1,2,...........,s  and

 

= k-1

                             (3.2)

Where y  <  < ∞,  > , , i= 1,2,..................,s. 

Now multiplying equation [3.1] by ek and differentiating the resulting equation mk times with
respect to k then, on using the derivative formula of Rainville9 , we find



= 
(3.3)

Where c   are the elements of the matrix  0 <  < y ,  > -1,

 > 0, m = 0,1,2,...........; i= 1,2,...................,s. 

Hence the series equations [1.1] and [1.2] has been converted to the respective series
equations [3.3] and [3.2]. The left hand sides of the series equations [3.3] and [3.2] are now
identical and hence on using the orthogonality property [2.2] of Batman- k functions we find the
solution of series equations [1.1] and [1.2] in the form7-11

 A  = d   

 

 where d   are the elements of the matrix                                                        (3.4)

and
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=  

where 0  , k= 1,2,..........,r and i= 1,2,................,s.   (3.5)

and G  

=

`
  

where y  <  < ∞, k= 1,2,.................,r and i= 1,2,..................,s.          (3.6)

provided k+k+1> 0, k > k > k-mk, 2k+k+1 > 0, k+1  0, mk are non- negative integers7-10

for k= 1,2,...............,r and n= 0,1,2,..............; j= 1,2,..............,s.
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