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Abstract

In this paper we introduce the concepts of 1S -near subtraction
semigroups, that is near subtraction semigroups X satisfying the condition:

for every Xa  there exists }0{ Xx  such that xaaxa  . WeWe
also discuss some of their properties and obtain certain characterisation
theorems.
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Introduction

A non empty set X together with a
binary operation ‘ ’ is said to be a subtraction
algebra if it satisfies the following axioms:
(i) xxyx  )(
(ii) )()( xyyyxx 

(iii) yzxzyx  )()(  for every

.,, Xzyx 

A non empty set X  together with two
binary operations ‘ ’ and ‘  ’ is said to be a

right near subtraction semigroup if it satisfies
the following:
(i) ),( X  is a subtraction algebra.

(ii) ),( X  is a semigroup.

(iii) zyzxzyx  )(  for all Xzyx ,, .

We shall henceforth write xy  for
yx   for any two elements yx,  of X .

Throughout this paper, X stands for a
(right) near subtraction semigroup ),,( X
with at least two elements. The subtraction
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determines an order relation on :  baX
0 ba  where aa 0  is an element that

does not depend on the choice of Xa  . In

X , 00  x  and 00 x  for all Xx  . If

00 x  for all Xx  , we say X  is zero
symmetric.

We recall the following definitions
from6: A near subtraction semigroup X  is said
to have (i) IFP (Insertion of Factors Property)
if for ba,  in X , 00  axbab  for all

Xx   (ii) )IFP(*,  if X  has IFP and

00  baab  for Xba ,  (iii) Strong

IFP if for all ideals I  of X , IaxbIab 

for a ll x  in X .  If XBA , ,  then

},/{ BbAaabAB  .

We say that subset Y  of X  which is
closed under ‘ ’ and YXY   is called an
X -system and if in addition,  YYX  then

Y is called an invariant X -system1-3.

If there exists a map XXf :
such that aafaa )(  for all a  in X  then

f is called a mate function for .X  We say that
X  is an )'(SS  near subtraction semigroup if

)(aXXaa   for all Xa  .

2. Notation :

a) An element Xe  is said to be (i) idem-

potent  if ee 2  (ii) nilpotent if 0ke

for some positive integer k  ( X is said to
be nil if every element of X  is nilpotent)
(iii) right identity if aea   for every Xa  .

b) If 002  aa  for all Xa  , then

X  has no non zero nilpotent elements (as
in problem 14, p.9 of 4).

c) nynxyxnXnX d  )(/{ , for

all }, Xyx  -the set of  all  distributive
elements of X .

d) The centre of X  is defined as aXC  {)(
xaaxX  /  for all }Xx .

e) E  denotes the set of all idempotents
of X .

f) L  denotes the set of all nilpotent elements
of X .

g) }0{*  XX .

For definitions and notations used but
left undefined in this paper we refer to Pilz5.

3. 1S -Near Subtraction Semigroup :

Let us begin with the following
definition:

Definition 3.1: We say that X  is an

1S -near subtraction semigroup if for every

Xa   there exists *Xx   such that
.xaaxa 

         Examples 3.2 (a) Let }1,,,0{ baX 
in which ‘ ’ and ‘  ’ are defined by
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 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 b a 0

 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

 This is an S1-near subtraction semigroup.

(b) We consider the near subtraction semigroup
(X,-,.)where  }1,,,0{ baX  , ‘’ and ‘.’ are
defined by

 0 a b 1
0 0 0 0 0
a a 0 1 b
b b 0 0 b
1 1 0 1 0

 0 a b 1
0 0 0 0 0
a a a a a
b a 0 1 b
1 0 a b 1

This is not an S1-near subtraction
semigroup.

We shall now prove a characterisation
of S1-near subtraction semigroups.

Theorem 3.3 : Let X be a nil near
subtraction semigroup. Then X is an S1-near
subtraction semigroup if and only if X is zero
symmetric.

Proof: For the only if part, we take
 Xa  . Since X is an S1-near subtraction

semigroup there exists  *Xx   such that,

 xaaxa   (1)
We shall prove that

 axaax kk   (2)
for all positive integers k. Equation (1) demands
that (2) is true for k=1. We assume that the
result is true for  1 sk . If k = s then

 axaaxxaaxaax sss 11 )(    (by [1]) =

 xaaaxs )( 1  xaax s )( 1  )(1 axaxs =

 axxax ss  )(1 . Thus by induction  aaxk 

ax k  for all positive integers k. Since X is nil,

 0tx  for some positive integer t and since

 aax t  =  ax t  we get  .00 aaa   It follows
that  X is zero symmetric.

For the if part, let  Xa  . Since X is
nil, there exists a positive integer k > 1 such

that  0ka . This implies  0xa  where

 1 kax . Therefore  )(xaaaxa   =  00 a
(since X is zero-symmetric) = xa. Thus X is
an S1 near subtraction semigroup.

Proposition 3.4 :  Let X be a zero
symmetric S1-near subtraction semigroup. If
X has no non-zero zero-divisors then every X-
system and every ideal of X is an S1-near
subtraction semigroup in its own right.

Proof: Let A be an X-system of X and
 }0{*  AA . Let  .*Aa   Since X is an S1-near



subtraction semigroup there exists  *Xx 
such that  xaaxa  . We take  XAxan  .

Since A is an X-system of X,  .An  Since X has

no non-zero zero-divisors,  0n .  Now

 axaaana )( = naaxaaaxa  )()( .  If

 0a  then, since X is zero symmetric,

 naana   for any  .*An   Thus A is an S1-
near subtraction semigroup.

Next, let I be an ideal of X and let

 Ia  . If  0a  then  naana  for any  *In  .

Suppose  0a . Since X is an S1-near subtraction

semigroup, there exists  *Xx   such that

 xaaxa  . If  ,IXaxi   since I is an ideal
of X we get  .Ii 

Our hypothesis demands that i  0.
Now    )()( axaaaaxaaia   aaxxaa  )()(

ia .  Thus I is an S1-near subtraction
semigroup.

We furnish below a necessary and
sufficient condition for an S1-near subtraction
semigroup to have a mate function.

Proposition 3.5: Let X be an S1-near
subtraction semigroup without non-zero zero-
divisors. Then X has a mate function if and
only if X is Boolean.

Proof: Let  Xa  . Since X is an S1-
near subtraction semigroup there exists
 *Xx   such that  xaaxa  .

For the ‘only if ’ part, we assume that,
X has a mate function ‘f ’. Then  aaafa )( .

We have, xaaaf )( = ))(( xaaaf =  ))(( axaaaf
)()( xaaaaf = axa .  That is,  xaaaf )(

axa and this implies  0)(  axaxaaaf 

 0))((  xaaaaf . Since X has no non-zero
zero-divisors,  0)(  aaaf . That is  aaaf )( .

Therefore  2))(( aaaaf  . This implies that

 2aa  . Consequently X is Boolean.

Proof of ‘if ’ part is obvious.

4. S1-near subtraction semigroup and the
subsets:

In this section  we introduce the

notation  )(
1

aX S
8,  Xa  and discuss the

properties of S1-near subtraction semigroup

with the subset  )(
1

aX S .

Notation 4.1: For any  Xa  , we

denote  }/{ * xaaxaXx   by  )(
1

aX S .

Proposition 4.2:  It easily follows
that X is an S1-near subtraction semigroup if

and only if  )(
1

aX S  for all .Xa 

Proof: Straight forward.

Example 4.3 (a) We consider the S1-
near subtraction semigroup X cited in Example

3.2(a). We observe that  )(
1

aX S for all
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 .Xa 

(b) In the case of Example 3.2(b),
 .)(

1
bX S

Proposition 4.4:  Let X be an S1-near
subtraction semigroup. If ab=ba for  Xba ,

and if   )()(
11

bXaX SS  then  )(
1

aX S

)()(
11

abXbX SS  .

        Proof: Let  ., Xba   Suppose  baab  .

Let  )()(
11

bXaXx SS   then  )(
1

aXx S

and  )(
1

bXx S  i.e.,  xaaxa  and  bxb
 xb . Now  )()()()( abxbaabxab  = )( baxab

)()( abbxbxab   =bx(ba)=  abxb)(  =  axb)(  =

 )(bax  =  )(abx .

It follows that  )(
1

abXx S and

hence  )()()(
111

abXbXaX SSS  .

Lemma 4.5: Let X be an S1-near

subtraction semigroup. Then  )(
1

aX S  has no

non-zero zero-divisors if and only if  )(
1

aX S

is a multiplicative system.

Proof: Since X is an S1-near subtra-

ction semigroup,  )(
1

aX S  for all  Xa 
(by Propsoition 4.2). For the ‘only if ’ part, let
 )(,

1
aXyx S . Then  *, Xyx   and  axa 

xa ,   yaaya  . It follows that  axya )(  =

 )( yaax = )(ayaax = yaaxa)( = yaxa)( = )(ayax
=  )( yax  =  axy)( . That is  axyaxya )()(  .

Further since  )(
1

aX S  has no non-zero zero

divisors,  0xy . Consequently,  )(
1

aXxy S

and  )(
1

aX S  is a multiplicative system.

For the ‘if ’ part, let  )(,
!

aXyx S .

Since  )(
1

aX S  is a multiplicative system

 )(
1

aXxy S . As  *)(
1

XaX S  , it follows

that  0xy  and hence  )(
1

aX S  has no non-
zero zero-divisors.

We conclude our discussion with
theorems 4.7 where we prove some important
properties of an S1-near subtraction semigroup.
Before that we have:

          Lemma 4.6 : If X is an S1-near subtract-

tion semigroup then  )(
1

aX S  )(
1

k
S aX  for all

positive integers k > 1 and for all  .Xa 

         Proof: Let  )(
1

aXx S    xaaxa  .

Therefore  aaxaaxaa )(22  = xxaa )( =  aaxa)(

=  axa)(  =  2xa . That is  22 xaa  =  2xa .
Continuing in the same vein we get,  kk xaa  =

 kxa  for all positive integer k. It follows that

 )()(
11

k
SS aXaX  .

Theorem 4.7: Let X be an S1-near
subtraction semigroup, without non-zero zero
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divisors. Then we have the following:

(i)  )()(
11

aXaaX SS  for all  .*Xa

(ii)  )()(
11

aXaaX SS   for all  .*Xa

(iii) If  X  is finite  then   aaX S )(
1

 )(
1

aX S

for all  .*Xa

(iv) If X is zero symmetric then  )(
1

*XaX S 

)(
1

aX S  for all  .Xa 

(v)  )()]([
11

k
S

k
S aXaX   for all positive

integers k > 1 and for all  .Xa 

Proof: (i) Let  )(
!

aaXz S . Then there

exists  )(
1

aXx S  such that  axz  . Since

 ),(
1

aXx S  xaaxa  .  Now   aza=  aaxa )(
= )(axaa = )(xaa = aax)( = za .  Since  X has

no non-zero zero-divisors,  .*Xz   It follows

that  )(
1

aXz S  and therefore7

 )()(
11

aXaaX SS      (3)

Let  )(
1

aXy S . Then  yaaya  .

That is  0)(  ayay . Since X has no non-

zero zero-divisors,  0 yay .  This implies

 )(
1

aaXayy S  and therefore

 )()(
11

aaXaX SS    (4)

From (3) and (4) we get  )(
1

aaX S 

).(
1

aX S

(ii) If  )(
1

aXz S  then  zaaza  .  Clearly

then  azaa )( =  aaza)( = aza)( . That is  azaa )(
=  aza)( . Since X has no  non-zero divisors

 0za . Consequently,  )(
1

aXza S  

).()(
11

aXaaX SS 

(iii) Suppose X is a finite S1-near subtraction

semigroup. Let  sxxx ,,, 21   be all the

elements of  )(
1

aX S .   From (ii) we get

 axax 21 , ,  ... ,  )(
1

aXax Ss   for all  .*Xa 
We prove that they all are distinct. Suppose
 axax lk   for  lk  . Then  .0)(  axx lk

Since X has no non-zero divisors we get
 0 lk xx . That is  lk xx   which is a

contradiction to  lk  . Therefore  axax 21 , ,

... ,  axs  are s-distinct elements lying in

 )(
1

aX S . Thus every element  )(
1

aXy S

can be written as  axy t  for some xt in

 ).(
1

aX S  Therefore  )(
1

aX S   aaX S )(
1

 and

by using (ii) we get  aaX S )(
1

 =  )(
1

aX S .

(iv) We observe that X is zero-symmetric since
it is an S1-near subtraction semigroup by Theorem
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3.3.  For any  *, Xna  ,   )(
1

aXx S 

 .0)(  axaxxaaxa  Since X has no

non-zero zero-divisors,  0 xax . Therefore

 .00)(  nanaxax  This implies that

 .0 xnaaxna That is  .)()( axnaxna 
Since X has no non-zero zero-divisors,

 .0xn  Therefore  )(
1

aXxn S  and this

implies  *)(
1

XaX S   ).(
1

aX S  If  0a , then

 0)(0)(0 xnxn  (since X is zero-symmetric.

Consequently  *)(
1

XaX S      )(
1

aX S   for all

 .Xa 

(v) Since X has non-zero zero divisors,  )(
1

aX S

has no non-zero zero divisors for all  .Xa 

Now Lemma 4.5 demands that  )(
1

aX S  is a

multiplicative system. That is  )(
1

aXxy S

for all  ).(,
1

aXyx S  Therefore  )]([
1

2aX S

).(
1

aX S  Proceeding this way,,

 )()]([
11

aXaX S
k

S      (5)

for all positive integers k > 1. Appealing to
Lemma 4.6 we get.

 )()(
11

k
SS aXaX   (6)

Comibining (5) and (6) we get
 ).()]([

11

k
S

k
S aXaX 
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