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Abstract

In this paper we introduce the concepts of S, -near subtraction
semigroups, that is near subtraction semigroups X satisfying the condition:

for every a € X thereexists X € X —{0} suchthataxa = xa.We

also discuss some of their properties and obtain certain characterisation
theorems.
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Introduction right near subtraction semigroup if it satisfies
the following:
A non empty set X together with a (i) (X, -) is a subtraction algebra.

binary operation * — ” is said to be a subtraction
algebra if it satisfies the following axioms:

(i) x=(y-x)=x

(i) (X, -) is a semigroup.
(i) (x—y)-z=x-z—y-zforall x, y,z e X.

(ii) X=(x=y)=y-(y—x) We shall henceforth write Xy for
(iii) (X—=y)—z=(x-2z)—y forevery Xx-y for any two elements X, y of X .
X,Y,Ze X.

Throughout this paper, X stands for a

Anon empty set X together withtwo  (right) near subtraction semigroup (X, —, -)
binary operations ‘— " and “.” is said to be a  with at least two elements. The subtraction
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determines an order relationon X :a <b <
a—b =0 where 0 =a—a isanelement that
does not depend on the choice of a € X . In
X,0-x=0and Ox=0 forall xe X . If

X0=0 for all xe X, we say X is zero
symmetric.

We recall the following definitions
fromé: Anear subtraction semigroup X is said
to have (i) IFP (Insertion of Factors Property)

iffora,bin x,ab=0= axb =0 forall
Xxe X (ii) (*,IFP) if X has IFP and
ab=0=ba=0 for a,b e X (iii) Strong
IFP ifforallideals | of X,abe | = axb e |
for all x in X. If ABc X, then
AB ={ab/a €A b € B}.

We say that subset Y of X whichis
closed under * —” and XY <Y is called an

X -system and if in addition, YX <Y then
y is called an invariant X -system!,

If there exists amap f : X —» X
suchthat a = a f(a)a forall a in X then
f is called a mate function for X. We say that
X isan S(S') near subtraction semigroup if
a e Xa(aX) forall a € X.

2. Notation :

a) Anelement e € X is said to be (i) idem-

potent if 2 = e (ii) nilpotent if e =0
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for some positive integer k ( X is said to
be nil if every element of X is nilpotent)

(iii) right identity ifea = a foreverya € X.
b) Ifa?=0=a =0 forall a € X, then
X' has no non zero nilpotent elements (as

in problem 14, p.9 of 4).
c) Xy ={neX /n(x-y)=nx-ny,for
all x, y € X}-the set of all distributive

elements of X .
d) Thecentreof X isdefinedas C(X) ={a

e X/ax = xa forall xe X}.

e) E denotes the set of all idempotents
of X.

f) L denotes the set of all nilpotent elements
of X.

9 X' =X -{0}.

For definitions and notations used but
left undefined in this paper we refer to Pilz®.

3. S,-Near Subtraction Semigroup :

Let us begin with the following
definition:

Definition 3.1: We say that X is an

S, -near subtraction semigroup if for every

a e X there exists x e X" such that
axa = xa.

Examples 3.2 (a) Let X ={0, a, b, 1}
in which “ — " and *.” are defined by
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-0 a b 1
0|0 0O O O
ala 0 a O
blb b 0 0
111 b a 0
. 0 a b 1
0|0 0O O O
al0 a 0 a
b]0 O b b
110 a b 1

This is an S;-near subtraction semigroup.

(b) We consider the near subtraction semigroup
(X,-,.)where X ={0, a, b, 1}, “~" and " are
defined by

- lo a b 1
0|0 0 O O
ala 0 1 b
b b 0 0 b
1 {1 0 1 O
-0 a b 1
0]0 0 0 O
ala a a a
bla 0 1 b
1{0 a b 1

This is not an Si-near subtraction
semigroup.

We shall now prove a characterisation
of S;-near subtraction semigroups.

Theorem 3.3 : Let X be a nil near
subtraction semigroup. Then X is an S;-near

subtraction semigroup if and only if X is zero
symmetric.

S, -Near subtraction semigroups.

Proof: For the only if part, we take
a € X . Since X is an Si-near subtraction

semigroup there exists X € X" such that,
axa = xa (1)
We shall prove that
ax“a = x“a (2)
for all positive integers k. Equation (1) demands
that (2) is true for k=1. We assume that the
result is true for k =s — 1. If k = s then

ax’a = ax**(xa) = ax*axa (by [1])

(ax*'a)xa = (x*'a)xa = x*"'(axa)

X*7(xa) = x°a. Thus by induction ax‘a =
x*a for all positive integers k. Since X is nil,

x' = 0 for some positive integer t and since

ax'a = x'a we get a0a = Oa. It follows
that X is zero symmetric.

For the if part, let a € X . Since X is
nil, there exists a positive integer k > 1 such

that a¥ = 0. This implies xa =0 where

X = a“*. Therefore axa = a(xa) = a0 =0
(since X is zero-symmetric) = xa. Thus X is
an S; near subtraction semigroup.

Proposition 3.4 : Let X be a zero
symmetric S;-near subtraction semigroup. If
X has no non-zero zero-divisors then every X-
system and every ideal of X is an Sj-near
subtraction semigroup in its own right.

Proof: Let A be an X-system of X and
A" =A—{0} Leta e A". Since X is an Sy-near
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subtraction semigroup there exists x € X~
suchthat axa = Xa .Wetake n = xa € XA.
Since Alisan X-systemof X, n € A.Since X has
no non-zero zero-divisors, n = 0. Now
ana = a(xa)a=(axa)a = (xa)a =na. If
a=0 then, since X is zero symmetric,

ana =na forany n € A". Thus Ais an S;-
near subtraction semigroup.

Next, let | be an ideal of X and let
ael.lfa=0thenana =naforanyn e |”.

Suppose a # 0. Since X is an S;-near subtraction

semigroup, there exists x € X~ such that
axa = xa.If i = ax € IX, sincelisanideal
of Xweget i el.

Our hypothesis demands that i = O.
Now aia = a(ax)a = a(axa) = a(xa) = (ax)a
=ja. Thus I is an S;-near subtraction
semigroup.

We furnish below a necessary and
sufficient condition for an S;-near subtraction
semigroup to have a mate function.

Proposition 3.5: Let X be an S;-near
subtraction semigroup without non-zero zero-
divisors. Then X has a mate function if and
only if X is Boolean.

Proof: Let a € X . Since Xis an S;-
near subtraction semigroup there exists

X € X" such that axa = xa .
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For the ‘only if * part, we assume that,
X has a mate function ‘f*. Then a = af (a)a.

We have, af (a)xa=af (a)(xa)= af (a)(axa)
= af (a)a(xa)=axa. That is, af (a)xa =
axa and this implies af (a)xa —axa = 0=
(af (a) —a)xa=0. Since X has no non-zero
zero-divisors, af (a) —a = 0. Thatis af (a) = a.
Therefore (af (a))a =a?. This implies that

a = a2. Consequently X is Boolean.

Proof of ‘“if * part is obvious.

4. Si-near subtraction semigroup and the
subsets:

In this section we introduce the
notation X ()% ae X and discuss the
properties of Si-near subtraction semigroup

with the subset X ().

Notation 4.1: Forany a e X, we
denote {x € X~ / axa = xa} by Xs ().
Proposition 4.2: It easily follows

that X is an S;-near subtraction semigroup if

and only if Xsl(a) # ¢ foralla e X.

Proof: Straight forward.

Example 4.3 (a) We consider the Si-
near subtraction semigroup X cited in Example

3.2(a). We observe that X (a) = ¢ for all
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ae X.

(b) In the case of Example 3.2(b),
Xsl(b)=¢.

Proposition 4.4: Let X be an S;-near
subtraction semigroup. If ab=bafor a,b e X

and if X (a) N Xg (D) #¢ then X (a)
N X (b) = X (ab).

Proof: Let a, b € X. Suppose ab = ba.
Let X € X, (a) N X (b) then X € X ()
and X € X (b) i.e, axa = xaand bxb
= Xb. Now (ab)x(ab) = (ba)x(ab) =b(axa)b
=b(xa)b = bx(ab) =bx(ba)= (bxb)a = (xb)a =
x(ba) = x(ab).

It follows that X e X (ab)and
hence X () N X (b) = X, (ab).

Lemma 4.5: Let X be an S;-near
subtraction semigroup. Then X () has no
non-zero zero-divisors if and only if Xg (a)
is a multiplicative system.

Proof: Since X is an S;-near subtra-

ction semigroup, X (a) # ¢ forall a € X
(by Propsoition 4.2). For the ‘only if * part, let
X, y € X5 (a). Then x, y € X" and axa =

xa, aya = ya. It follows that a(xy)a =

S, -Near subtraction semigroups.

ax(ya)=ax(aya)=(axa)ya=(xa)ya=x(aya)
= x(ya) = (xy)a. Thatis a(xy)a = (xy)a.
Further since X (@) has no non-zero zero
divisors, xy = 0. Consequently, Xy € X ()

and X (@) is a multiplicative system.

For the “if * part, let X, y € X ().
Since X (a) is a multiplicative system
Xy € X (). As Xg (a) = X, it follows

that xy = 0 and hence X (@) has no non-
zero zero-divisors.

We conclude our discussion with
theorems 4.7 where we prove some important

properties of an S;-near subtraction semigroup.
Before that we have:

Lemma 4.6 : If X is an S;-near subtract-
tion semigroup then X (@) < X (a*) forall

positive integers k > 1 and for all a € X.

Proof: Let X € X (a) = axa = xa.

Therefore a’xa’® = a(axa)a=a(xa)x= (axa)a

= (xa)a = xa?. That is a’xa’ = xa’.
Continuing in the same vein we get, g¥xa* =

xak for all positive integer k. It follows that

Xg () © X (a“).

Theorem 4.7: Let X be an Si-near
subtraction semigroup, without non-zero zero
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divisors. Then we have the following:
(i) aXs(a)=X(a)forallae X"
(i) Xs(a)ac Xg(a)forallae X

(iiiy I X is finite then X (a)a = X ()

forallae X".

(iv) If X is zero symmetric then X ()X~ <

X, (a) forall a e X.

(v) [Xg (@)1 < X (a*) for all positive

integers k > 1 and for all a € X.

Proof: (i) Let Z € aX (@). Then there
exists X € X (@) such that z=ax. Since
x € X (), axa = xa. Now aza= a(ax)a
=a(axa)=a(xa)=(ax)a=za. Since X has
no non-zero zero-divisors, z € X . It follows

that Z € X (@) and therefore’
aX, () < X4, (a) ©

Let ye X (a). Then aya=ya.
That is (ay —y)a =0. Since X has no non-
zero zero-divisors, ay —y = 0. This implies

y =ay € aXg (a) and therefore
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X5 (a) caX (a) (4)

From (3) and (4) we get aXg (a) =
X ().

(i) If ze X (a) then aza = za. Clearly
then a(za)a= (aza)a=(za)a. Thatis a(za)a
= (za)a. Since X has no non-zero divisors

za # 0. Consequently, zae X5 (@) =

X5, (@)a < X (a).

(iii) Suppose X is a finite S;-near subtraction
semigroup. Let X, X,, ..., X, be all the
elements of X (a). From (ii) we get

X8, X,a, ..., Xa e Xg (@) forallae X"
We prove that they all are distinct. Suppose
X.a = xa for k = 1. Then(x, —x,)a =0.
Since X has no non-zero divisors we get
X, —X =0. That is X, = X, which is a
contradictionto k = | . Therefore x,a, x,a,

., X.a are s-distinct elements lying in
X5, (@). Thus every element y e X (@)
can be written as y = x,a for some x; in
X (a). Therefore X (a) < X (a)a and
by using (i) we get X (a)a = X (a).

(iv) We observe that X is zero-symmetric since
it is an Sy-near subtraction semigroup by Theorem
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3.3. For any a,ne X", xeX;(a)=
axa = xa = (ax—x)a=0. Since X has no
non-zero zero-divisors, ax — X = 0. Therefore
(ax—x)na = Ona = 0. This implies that

axna — xna = 0. That is a(xn)a = (xn)a.
Since X has no non-zero zero-divisors,

xn # 0. Therefore Xn € X, (a) and this
implies Xsl(a)X* c X (a). If a=0,then
0(xn)0= (xn)0 (since X is zero-symmetric.
Consequently X (a)X~ < X, (@) forall
aeX.

(v) Since X has non-zero zero divisors, X s (a)
has no non-zero zero divisors for all a € X.

Now Lemma 4.5 demands that X (@) is a
multiplicative system. That is XYy € XSl (a)
forall X, y € X (a). Therefore [X (a)]’

< X, (). Proceeding this way,

[Xs @] < X (a) (5)

for all positive integers k > 1. Appealing to
Lemma 4.6 we get.
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X5 (@) © X (") (6)

Comibining (5) and (6) we get
[Xsl(a)]k = Xsl(ak)-
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