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Abstract

The formal solution of certain simultaneous triple integral
equations involving Fox’s H-functions is obtained by the method of
fractional integration. By the application of fractional integration
operators, the given simultaneous triple integral equations are
transformed into three others with a common kernel and the problem
then reduced to that of solving one integral equation.
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1. Introduction

Fox c6 defined the H-function as
follows:

  

where

[1.1]
z is not equal to zero, an empty product is to
be interpreted as unity and the following

simplified assumptions are made2-5:

(i) m, n, p and q are integers satisfying 0 
m  q, n  p.

(ii) 

   are
positive numbers.

(iii) aj=(j=1,2, ... ... ... ..., p), bj:(j=1,2, ... ... ...
..., q) are complex numbers such that no
pole of (bh-hs), h=1,2,……,m coincides
with any pole of (1-aj+js), j=1,2, ..., n.
i.e. j(bh+)h(aj+) for ,=0,1,2,…
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……….. and h=1,2,………,m and
j=1,2,……….,n.

(iv) All the poles of the integrand in [1.1] are
simple.

(v) The contour L is Mellin Barnes type which
runs from -i to +i in S(=+i,  and
t being real) plane such that the points

s=   , h=1,2,…………,m; =0,1,2,

……… which are the poles of  

lie to the right and the points s =  ,
j=1,2,………….,n ; =0,1,2,……… which
are the poles of   lie to
the left of L. Such a contour L is possible
on account of (iii).

(vi) The conditions for the convergence of
the integral [5.1.1] can be found in the
research paper of Braaksma1.

In an earlier section, Fox, c. 6 introduced
the H-function in the following manner

 

           =

where

 

 [1.2]
behaves as Symmetrical Fourier kernel
2. Results used in the proof of the sequel:

Mellin Transform:

  [2.1]

Inverse Mellin Transform:

         [2.2]

For s=+it , x>0

Parseval’s Theorem for Mellin Transform:

If M {f (u)} =F(s) and M {a (u)} =A(s)
Then

 

 [2.3]

Fox’s Beta Formulae:

Fox defined Beta formulae by following
fractional integrals5-10:

   [2.4]

Provided d>e and   > where s = +it and

0< x < 1

      [2.5]

Provide d>e and  > where s= +it and x>1
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Fractional Erdelyi-Kober Operator:

Fox used the following generalized Erdelyi-Kober operators:

 
  [2.6]

Where 0<x<1

      [2.7]

Where x > 1
The operator T exists. If f(x)Lp(0,) , p>1 , >0 and > (1-p)/p and If , f(x) can be differentiated
sufficient number of times then the operator T exists for both negative and positive value of .
The operator R exists. If f(x)Lp(0,), p1 and If, f(x) can be differentiated sufficient number
of times then the operator R exists. If m >  > -1/p while  can take any negative or positive
value1-5.

A Theorem For Mellin Transform:

If M{f(u)}=F(s) and M{g(u)}=G(s) then

   [2.8]

Thus If g (ux) is considered to be a function of u with x as a parameter, where x > 0
Then M{g(ux)}= x-sG(s)          [2.9]

From [2.8] and [2.9], we have

 

   [2.10]



Additional conditions for the validity of [2.10] are that

F(s)   

and g(x) (0, ) p  where Lp denotes the class of functions g(x) such that

 [2.11]

3. Solution of simultaneous triple integral equations involving fox's H-functions as
symmetrical fourier kernel :

Here we consider following integral equations:

= ,                [3.1]

                                                                                              0 < x < 

 = , 

                                                                                               < x < 

       [3.3]

                                                                                               < x < 
Where ahk, bhk and chk are well known constants and Lk(x), Mk(x) and Nk(x) are prescribed

functions for h=1,2,………n , k=1,2,……….n. Here fh (u) is unknown function in integral
equations [3.1],[3.2] and [3.3] for h=1,2,…………..,n and 0 < < 1,<1<  and 1 < < .

Now applying Fox's result to integral equations [3.1], [3.2] and [3.3] then we have from
Persaval theorem of Mellin transform6-12

 

  = Lk(x)

Where 0 < x <  and k=1,2,………….,n. [3.4]
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 = Mk(x)

    where <x< and k=1, 2, …………., n.                                                             [3.5]

  = Nk(x)

where <x< and k=1,2,………….,n. [3.6]

In integral equation [3.4] replacing x by  and multiplying both sides of the equation
[3.4] by

 
and integrating both sides of integral equation [3.4] with respect to  from 0 to x where 0 <x< 
and applying Fox's Beta formula  [2.4] in integral equation [3.4], we find

 [3.7]

 

 

where 0<x< and k=1,2,………….,n.
Using the Erdelyi-Kober Operator T from [2.6] in equation [3.7] for brevity, we write

 [3.8]

                  where 0 < x <and k=1,2,………….,n.
then

  [3.9]
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where 0<x<  and k=1,2,………….,n.
Hence from [3.9] , the integral equation [3.7] can be written as

 

 [3.10]

where 0 < x <and k=1,2,..,n
Now repeating the same process in integral equation [3.10] for
 j=p-1, p-2 ,……,3,2,1. Then the integral equation [3.10] takes the form

 

    [3.11]

where 0 < x <and k=1,2,..,n

Likewise in integral equation [3.11] we can transform the factor ( ) to

)  by using Fox's Beta formula [2.4] and the operator  

where

 [3.12]

Accordingly [3.11] takes the form
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 [3.13]

where 0<x< and k=1, 2,………….,n.
Or

 

 
       [3.13]

 where 0<x< and k=1, 2,………….,n, where dhk are the elements of the matrix

 

Similarly in integral equation [3.6] we can

transform the factor (  -j+sj) to (  +sj)
by using Fox's Beta formula [2.5] and the
operator  where

 

[3.14]
According [3.6] takes the form

[3.15]

          
 

       where <x< and k=1, 2,……….,n.

Likewise in integral equation [3.15] we can
transform the factor  to 
by using Fox's Beta formula [2.5] and the
operator  where

  [3.16]

Accordingly [3.15] takes the form
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    [3.17]

                         Where <x< and k=1,2,……….,n.
Or

 

 
[3.18]

Where ehk are the elements of the matrix [bhk][chk]-1 where h=1,2,………..,n and
k=1,2,………,n  and <x<.

Hence Integral equations [3.4], [3.5] and [3.6] reduced to three corresponding integral
equations [3.13], [3.5] and [3.18] having common kernel. If we now write

 
  [3.19]

                      

  where k=1, 2, ……….., n.
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Then integral equations [3.13], [3.5] and [3.18]
can be put into the compact form as

 

 

  [3.20]

      where k=1, 2,……….., n & x(0.)
Hence from the theorem of Mellin Transform
[2.10] we can write

 

  [3.21]

where k=1, 2,……….., n.
On applying the Parseval theorem [2.3] and
treating   as a symmetrical Fourier
kernel, the formal solution of [3.21] is given by

  

        where h=1,2,…………,n. [3.22]
i.e.

 

[3.23]

              where h=1,2,…………,n.

        Where fhk are the elements of the matrix
[bhk]-1. Since our method is purely formal.

It does not give the conditions for the
validity of the solution. Also the formal solution
of integral equations [3.1], [3.2] and [3.3] is given
by

 

         where h =1,2,……………..,n.

where dhk and ehk are the element of
the matrices [bhk] [ahk]-1 and [bhk] [chk]-1

respectively and fhk are the elements of the
matrix [bhk]-1.
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