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Abstract

A self-similar spherically symmetric model is constructed to describe a blast wave in the solar wind produced by
a solar flare. The shock wave is assumed to advance into a conducting gas streaming with a constant velocity ahead of the
shock. Numerical solutions are obtained for the distribution of flow variables within the shocked gas for the special choice
of parameters and for uniform and non-uniform distribution of density in ambient solar atmosphere. In particular, the time
of transit of the shock at the earth’s orbit is calculated. It is observed that the streaming ambient solar atmosphere reduces
variations in flow variables in crossing the shock at earth’s orbit.
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1. Introduction
It is well established fact that the solar corona

undergoes a continuous dynamical expansion and produces
a flow known as solar wind1,2. It is also well supported by
observations that the travelling interplanetary shocks are
associated with coronal mass ejections and flares3, Holzer4,
Macqueen5, Sheelay6 et al., Wu7 et al., Chao8 etc. If the
speed of the ejected material relative to the ambient solar
wind exceeds the local magneto acoustic speeds
magnetohydrodynamic shock front forms at the leading edge
of the compressed ambient plasma. Many interesting
theoretical ideas have been pursued to explain phenomena
of the formation of interplanetary disturbances and their
subsequent propagation through solar wind under different
degrees of approximations (Parker9, Simon and Axford10,
Lee and Chen11, Korobeinikov12, Tam and Yousofian13,

Hundhausen14, Stenolfson15,16, Summers17, Low18 etc).
Observations on the moving disturbances indicate

that this process is purely magnetohydrodynamic
phenomena and the expulsion of mass and magnetic field
through the corona are the principal ingredient of the process.
It is also evident from the typical velocity of the ejected
material that the ensuing motion is highly energetic and
non-linear and considerable amount of mass and magnetic
field are ejected in the process.Comparing the motion with
non-linear gas dynamics, Parker9 has pointed out that the
hydrodynamic blast wave theory can be used successfully
to describe the flow due to sudden expansion of solar
corona.By using similarity solution method of the
hydrodynamic equations he has presented a number of
numerical solutions and applied the results to the flow
produced by sudden coronal expansion.

The first analytical treatment of the time



dependent propagation of a flare generated disturbances
through an ambient solar wind including the magnetic field
was the similarily solution of Lee and Chen11, which was
extended to more general ambient atmosphere by Rosenau
and Frankenthal19 and Rosenau20. Constructing an idealized
model of magnetohydrodynamic spherical blast wave,
Summers17 obtained complete analytical solutions by using
the method of similarity transformations and applied the
results to a flare generated shock.

Low21 has derived a class of self-similar solutions
of time dependent non-linear magnetohydrodynamic motion
and describe the evolution of coronal transient phenomena.
Ojha and Tiwari extended the analysis of Low21 to include
the rotation of solar wind and derived a class of self similar
solutions of coronal transients in a rotating solar wind. In
present study we have constructed a similarity solution
following the method of Rogers and applied the results to a
flare generated interplanetary hydrodynamic shock wave.
To make the problem mathematically tractable the solar
wind is assumed to behave as a polytrophic gas of infinite
conductivity with negligible dissipative effects and the flow
is spherically symmetric confined to the solar equatorial
plane. Following Summers17 we have omitted the effects
due to gravity.The ambient solar wind velocity is taken into
account in comparison with the velocity of blast wave (Lee
and Chen11).  It is assumed that the density of the ambient
solar wind is decreasing as in case of Summers17 and Lee
and Chen11 but not magnetic field.The present work extends
this treatment to the case where the density behaves as r-l

with 0  l < 3 in place of r-2.
The similarity solutions obtained heredescribed

the evolution of disturbances in the ambient solar wind
between the leading shock and the trailing contact
surface.The contact surface represents the trailing edge of
the shocked ambient solar wind and the leading edge of the
material originating in the solar event responsible for the
disturbance. In particular, we have calculated time of transit
of the resulting shock to the earth’s orbit. It has been
observed that the streaming solar wind reduces velocity
and pressure across the shock wave on the earth’s orbit.We
are concerned ourselves mainly with illustrating basic
physical process rather than to fit the theory to a
comparison with specific observations.

2. Fundamental Equations and Shock Conditions :
The fundamental equations governing the motion

of a spherically symmetric electrically conducting ideal gas
are, Summers17, Lee and Chen11, Rosenau and Frankenthal19
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where r and t are the independent space and time co-
ordinates,ρ the density,p the pressure,u the gas velocity,B
the magnetic field and γ is the ratio of specific heats.

The conservation relations hold across a general
hydro magnetic discontinuity. These relations become the
appropriate boundary conditions for the interplanetary
shock wave. The conservation of mass, momentum and
energy for a perfect medium reduces to
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Where V is the velocity of the shock and [    ] means the
change of the enclosed quantity across the shock wave.
Following Grib(1979), take
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where M, βο and δ are defined as the Machnumber i.e. ratio
of actual shock speed to the sound speed,the ratio of the
fluid pressure to the magnetic pressure in the ambient solar
atmosphere which is the parameter measuring strength of
the magnetic field and the ratio of the apparent shock speed
to the actual shock speed relative to the ambient streaming
solar wind. u0 represents the uniform solar wind streaming
velocity in ambient atmosphere.

It is easy to see that in absence of magnetic field
βο tends to infinity and the above shock conditions reduce
to ordinary shock conditions in a perfect gas.
For strong shocks, we have11
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3. Similarity Solutions :
Suppose that the motion of the disturbance is

confined within the shock surface r=R(t) and the apparent
velocity V of the shock surface moving outward isdR/dt.
Consider a similarity transformation
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where
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We choose the shock front to be determined by   0

where  is cons tan t and is given by
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Actual velocity of the shock wave       V-u0 =∝. R/δ. t.

Let the distribution of density in the ambient solar wind be
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ρc and l are constants.
The total energy within the shock wave is given by,
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Writing (3.9) in similarity transformation form, we get
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Let the energy released by flare be instantaneous and
therefore, total energy will depend only on � . Thus, we
have
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Introducing (3.1) – (3.5) in equation (2.1) –(2.4) we have
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Where dash (‘) denotes differentiation with respect to �.

Substituting (3.1) – (3.4) in shock conditions (2.10) – (2.14)

we get
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It is clear that for appropriate similarity transformation, it
is necessary to take k = 0, Now the problem is to solve four
ordinary differential equations
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with boundary conditions
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where N is given by equation (2.15).

4. Numerical Integration and Discussions:
Equations (3.20) – (3.23) with boundary

conditions (3.24)–(3.27) are integrated numerically for the
values of δ = 1, 1.5, l = 0, 1.5, 2.5 and β0 = , .05, .5, 1 and
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the variations of the flow variables i.e. velocity, density,
pressure & magnetic field behind the shock are given in figs.
1 – 4 respectively in case of static and streaming ambient
atmosphere ahead of the shock. The value of δ = 1
corresponds to the case where ambient solar atmosphere is
static while δ = 3/2 shows ambient solar atmosphere is
streaming ahead of the shock wave. If δ and apparent
velocities of the shock are known, it is easy to calculate
velocity of the ambient streaming atmosphere ahead of the
shock. For example, let δ = 3/2 and apparent velocity ofthe
shock be 1200 km./sec. then the actual velocity of the
streaming atmosphere ahead of the shock is 400 km./sec.The
variation in velocity behind the shock are plotted in fig.1
for the case of δ = 1 and δ = 3/2 separately. In both cases
velocities decreases behind the shock wave. The presence
of magnetic field in ambient atmosphere increases the
decrease in velocity in both the above cases. In case of
streaming atmosphere ahead of the shock, the decrease in
velocity is sharp in narrow region in comparison to static
ambient atmosphere.When l = 0 the value of density behind
the shock decreases, which becomes sharp in case of
streaming ambient atmosphere (see fig. 2 for δ = 1 and δ =
3/2). As l increases in presence of magnetic field the decrease
in flow variables becomes slow in comparison to uniform
atmosphere. For the case of l = 5/2, density increase behind
the shock in both case δ = 1 and δ = 3/2. Presence of magnetic
field slows down the increase in density behind the shock.

Fig. 3 shows that pressure also decreases behind
the shock when δ = 1 and δ = 3/2 but in case of streaming
atmosphere i.e. when δ = 3/2 the decrease in pressure looks
faster than the case δ = 1. Presence of magnetic field slows
down the decrease in pressure for both cases of the uniform
and non-uniform distribution of density ahead of the shock.

The variation in magnetic field is plotted in fig. 4
when δ = 1 and δ = 3/2. When density distribution ahead of
the shock is uniform, magnetic field decreases behind the
shock. For non-uniform density distribution, given by l <
5/2, ahead of the shock magnetic field decreases behind the
shock, in both the cases when δ = 1 and δ = 3/2, but when
l = 5/2 magnetic field increases behind the shock.

Thus, we conclude that the presence of streaming
ambient velocity, magnetic field, uniform and non-uniform
density distribution all affect greatly the motion of the gas
behind the shock wave.

The values of the density, particle velocity,
pressure and magnetic field within the region of shocked
gas at any point (r, t) in space time are obtained by our
solutions given by
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To find the time of transit of the resulting shock to the
earth’s orbit, take R = RE = 1.4 × 1013 cm. The density of
the solar wind at the earth’s orbit is 10 -23 gm./cm.3

(Summers17), For l = 5/2 the dimensional constant ρc takes
the value ~ 6 × 109 gm./cm.3 The coronal gas density is 10-14

gm./cm.3 Thus, the distance R in which vicinity the solar
flare is expected to erupt is of order 109 cm. Hence explosion
takes place over this scale of distance and similarity analysis
exists only when R > 109 cm. The observed speed of shock
at the earth’s orbit is 5 × 107 cm./sec.
For l = 5/2
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where VE and TE are the velocity of shock at the earth’s

orbit and time of transit at the earth’s surface and is

approximately equal to 2 ×105 sec. which is equal to

approximately 2 days.
In case of strong shocks, the values of density,

magnetic field are increased by a factor   (γ+1/γ-1)  in crossing
the shock at earth’s orbit where velocity and pressure are
given by-
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Thus, streaming ambient atmosphere ahead of the shock
reduces velocity and pressure in crossing shock at earth’s
surface.
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