
Abstract

 Various papers have been written on the theory of circulant graphs 3, 6, 8, 10, 11. Also graphs with circulant
adjacency matrices is discussed in7. Circulant graphs have important applications to the theory of designs and error
correcting codes13. The relationship between directed circulant graphs and binary linear codes is established in9. Each
binary cyclic code corresponds to an equivalence class of directed circulant graphs.  This paper discusses the method of
determining the equivalent circulant graphs associated with a binary cyclic code.
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1. Introduction

Circulant graphs is a special class of Cayley graphs. Various papers have been written on the theory
of circulant graphs3, 6, 8, 10, 11. It is interrelated with many branches of mathematics outside graph theory. For
example, for geometers, circulant graphs are known as star polygons4. Circulant graphs have been used to
solve problems in group theory1 as well as number theory and analysis5. They have important applications to
the theory of designs and error correcting codes13. The relationship between circulant graphs and binary linear
codes is established in9. This paper discusses the method of determining the equivalent circulant graphs
associated with a binary cyclic code.

2. Basic Concepts :
A graph G is a pair G = (V, E) consisting of a finite set V and a set E of 2-element subsets of V. The

elements of V are called vertices and the elements of E are called edges. Two vertices u and v of G are said to be
adjacent  if there is an edge e = (u,v)  E. Two edges are said to be adjacent if they have a common vertex. AA
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directed graph or digraph consists of a finite set V of vertices and a set A  of ordered pairs of distinct vertices
called arcs. If the ordered pair (u,v) is an arc a we say that arc a is directed from u to v.If G is a group and S is
a subset of G\{e}, we say that a graph X is a Cayley graph[2] of G with connectionset S written as X = Cay(G,
S) if  (i)V(X) = G   (ii) A(X) = { (g, sg): g  G & s  S }. Let Zn denote the additive group of integers modulo n and
let S  Zn\{0). If X = Cay(Zn, S), then we say X is a circulant graph of order n.

If F represents the binary field, then Fn the set of all n-tuples of F is an n-dimensional vector space over
F. A k-dimensional subspace of Fn is called an [n, k] binary linear code C. A basis of C consists of k linearly
independent binary n-tuples. The matrix G formed by the basis vectors is called a generator matrix of C. The
elements of C are called code words and are linear combinations of the rows of the generator matrix G.An [n, k]
code C is called cyclic 12 if whenever  x = (a0, a1, …………, an-1 ) is in C, so is its first cyclic shift   y = (an-1, a1,
…………, an-2 ).

When considering cyclic codes it is useful to let a vector (a0, a1, …, an-1 ) corresponds to a polynomial
a0+ a1x + …… + an-1 x

n-1 . Then (an-1, a0, .…,an-2 ) corresponds to an-1+ a0x + …… + an-2 x
n-1. This polynomial equals

the polynomial (a0+ a1x + ……+ an-1 x
n-1 )x  (modulo xn -1). Hence the cyclic shift corresponds to multiplication by

x. If F[x] represents the ring of polynomials over F, then the set  Rn =   consists of polynomials over F of

degree less than n is a ring. Polynomials in Rn are added co-ordinate wise and multiplication is modulo (xn – 1).A
set of elements S  in Rn corresponds to a cyclic code if and only if  S is an ideal in Rn.We here assume that n is
of the form 2m-1. Note that when n is odd, xn -1 has distinct factors.

The equivalence of circulant graphs and cyclic codes is established in the following theorem.
2.1. Theorem9:

If C is a binary cyclic code of length n, then C corresponds to a circulant graph on Zn. Conversely if X
= Cay (Zn, S) is a circulant graph on Zn, then X corresponds to a cyclic code.

The following theorem is a useful way to find the generator polynomial of the cyclic code representing
a circulant graph.
2.2. Theorem9:

Suppose X= Cay (Zn, S) be  a circulant graph. Let C be the cyclic code representing X and k(x) the
polynomial determined by S. Then g(x) = gcd (k(x), xn – 1) is the generator polynomial of C and C =<g(x)>. If g(x)
has degree n – k, then dim C = k.
3. Equivalence classes of circulant graphs :

The correspondence between circulant graphs and binary cyclic codes was established in  Theorem
2.1and that the relation “two circulant graphs are equivalent if and only if both of them represents the same
cyclic code” is an equivalence relation. We here develop a method to generate all the members belong to an
equivalence class.

Let C be a cyclic code of length n. Let g(x) be its generator polynomial. Then the n x n matrix determined
by the column vector

 

is the adjacency matrix of a circulant graph which corresponds to C. We shall derive the condition under which



Equivalent  Circulant Graphs associated with a Binary Cyclic Code. 253

the matrix of sum of its consecutive rows

 

is again the adjacency matrix of  another circulant graph which corresponds to C.It is the same as to derive the
condition for the two sets Span{g(x), xg(x), x2g(x),……….,xn-1g(x)} and Span {(x+1)g(x), x(x+1)g(x), x2

(x+1)g(x),………., xn-1(x +1)g(x),} are equal.The second set is clearly a subset of the first. Hence we want to
derive the condition that the first set is asubset of the second. Let

u(x) = (x + 1)g(x). Then
Span {x(x+1)g(x), x2 (x+1)g(x),……….,(xn-1 + 1)g(x), (x+1)g(x)} = Span{xu(x), x2u(x), ……., xn-1u(x), u(x)}
This is clearly a cyclic code. Therefore if g(x)    RHS, then xg(x),……,xn-1 g(x) are all elements of RHS. Now  g(x)

 RHS if we can find scalars   such that

g(x) =  
That is

 
        =M(xn -1) in F[x]

Since xn-1 = g(x)h(x), this is the same as

 ) = M(h(x))
That is

  = 1 + M(h(x)) (1)
Thus the matrix

   corresponds C if and only if we can find scalars   satisfying

condition (1)

3.1.  Example :
Consider the length 7 cyclic code corresponding to the circulant graph Cay (Z7, {1,3,4,6}). The generator

polynomial of the code is
g(x) = gcd (x + x3 + x4 + x6, x7 – 1) = 1 + x

Hence
h(x) = (1 + x + x3)(1 + x2 + x3)



 1 + h(x) = x + x2+ x3 + x4 + x5 + x6

Substituting this in equation (1) and equating coefficients of like terms on both sides, we get
 = 0, = 1,  = 1,  = 1, 1.

The corresponding matrix equation is

1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1

L

N

MMMMMMMMM

O

Q

PPPPPPPPP
 

   =    

Clearly this matrix equation is consistent, hence solvable. We can therefore apply the above result. By
successive application of the result, we get each of the circulant graphs Cay (Z7 ,{1,3,4,6}), Cay (Z7 ,{4,5}) Cay
(Z7 ,{4,6}), Cay (Z7 ,{1,4}), Cay (Z7 ,{1,2,4,5}) belong to the same equivalence class all of them corresponds to
the same cyclic code  C = <1 + x >

Since consistency of the matrix equation is essential for obtaining a solution, the above result holds if
and only if (1 + h(x)) is of even weight. That is h(x) is of odd weight. With the backup of the above discussions,
we can now state the following theorem.
3.2. Theorem :

Let X = Cay (Zn, k(x)) be a circulant graph that corresponds to a cyclic code C. Let g(x) be the generator
polynomial of C and that g(x) h(x) = xn – 1. Then Y = Cay (Zn, (x + 1)k(x)) also corresponds to C if and only if h(x)
is of odd weight.
3.3. Example

Let X = Cay (Z7, {1,2,3})
Here

g(x) = gcd (k(x), x7 – 1)
       = gcd (x + x2 + x3, x7 – 1) = 1

 h(x) = x7 – 1 = 0.
Since h(x) is of even weight, the above theorem does not hold. In factX = Cay (Z7, {1,2,3}) = Cay ( Z7,

x + x2 + x3)  Cay (Z7 , (x +1) (x + x2 + x3)) = Cay (Z7, x + x4) = Cay (Z7, {1,4}) = Y..
Eventhough certain class of equivalent circulant graphs which corresponds to the same cyclic code

can be determined by the above result, it will not be applicable in allcases as we have seen earlier. We therefore
seek a unified way which brings the members of each class together.
3.4. Theorem

Suppose that the polynomials a(x) and b(x) represent two circulant graphs of length n. If C1 and C2 are
the cyclic codes they correspond, then C1 = C2 if and only if there exist polynomials c(x) and d(x) which are
respectively relatively prime to the generator polynomials of C2 and C1 such that c(x) a(x) = d(x) b(x)
Proof :
Let h(x) and k(x) be the generator polynomials of C1 and C2. Then

h(x) = gcd (a(x), xn -1) and k(x) = gcd (b(x), xn -1).
Suppose C1 = C2.  Then h(x) = k(x). We have,
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a(x) = d(x) h(x) for some d(x) relatively prime to xn -1. Similarly
b(x) = c(x) k(x) for some c(x) relatively prime to xn -1.

Now
c(x) a(x) = d(x) b(x).

Since c(x) is relatively prime to xn -1, it is relatively prime to k(x). Since d(x) is relatively prime to xn -1, it is relatively
prime to h(x).

Conversely suppose that there exist c(x) and d(x) with gcd (c(x), k(x)) = 1 and gcd (d(x), h(x)) = 1 and that
c(x) a(x) = d(x) b(x). Since h(x) / a(x), h(x) / d(x) b(x). Since gcd (d(x), h(x)) = 1, h(x) / b(x). At the same time  h(x) /
xn -1. Therefore h(x) / k(x).Similarly, since k(x) /b(x), k(x) / c(x) a(x). Since gcd (c(x), k(x)) = 1 , k(x) / a(x). At the same
time k(x) / xn -1 . Therefore k(x) / h(x). Thus h(x) = k(x), hence C1 = C2. This proves the theorem.
3.5. Corollary :

Let a(x) and b(x) be  polynomials that represents  two circulant graphs. Let C1 and C2 be the cyclic codes
they correspond. If b(x) = c(x) a(x) for some c(x) relatively prime to xn -1, then C1 = C2.

Conversely if a(x) and b(x) represents the same code C, then there exist a polynomial u(x) representing
C such that u(x) = β(x) a(x) = α(x) b(x) for some α(x)  and β(x) relatively prime to xn -1
Proof :

The first part is an immediate consequence of the pervious theorem simply by taking d(x) = 1.Applying
the same theorem to the converse part, we have two polynomials α(x) and β(x) relatively prime to xn -1 such that

β(x) a(x) = α(x) b(x) = u(x) (say)
Then gcd (u(x), xn -1) = gcd (α(x) b(x), xn -1) = gcd (b(x), xn -1) = k(x) and

gcd (u(x), xn -1) = gcd (β(x) a(x), xn -1) = gcd (a(x), xn -1) = h(x).
Hence C is also represented by u(x) and that we have

u(x) = β(x) a(x)
         = α(x) b(x) where α(x) and β(x) relatively prime to xn -1.

3.6. Example :
Consider the circulant graphs  X = Cay (Z7 ,{3,4,5}) and Y = Cay (Z7,{1,3,5}). The polynomials they

represent are x3 + x4 + x5 and x + x3 + x5.Suppose
(x3 + x4 + x5) (a0 + a1x + ….. + a6x

6) =  x + x3 + x5.
Equating coefficients on both sides

a2 + a3 + a4 = 0, a3 + a4 + a5 = 1, a4 + a5 + a6 = 0,   a0 + a5 + a6 = 1
a0 + a1 + a6 = 0,  a0 + a1 + a2 = 1,  a1 + a2 + a3 = 0

The equations are consistent and provide a unique solution
a0 = 1, a1 = 0, a2 = 0, a3 = 0, a4 = 0, a5 = 1, a6 = 1

 (x3 + x4 + x5) (1 + x5+ x6) =  x + x3 + x5

 Since (1 + x5 + x6) is relatively prime to x7 – 1, X and Y corresponds to the same code, Other equivalent circulant
graphs are obtained by successively multiplying with (1 + x5 + x6)

(x + x3 + x5) (1 + x5 + x6) = 1 + x2 + x4 + x5 + x6

(1 + x2 + x4 + x5 + x6) (1 + x5 + x6) = x + x4 + x5

(x + x4 + x5) (1 + x5 + x6) = 1 + x + x2 + x5 + x6

(1 + x + x2 + x5 + x6) (1 + x5 + x6)=  1 + x2 + x3 + x5 + x6

(1 + x2 + x3 + x5 + x6) (1 + x5 + x6)=  x5

x5(1 + x5 + x6)=  (x3 + x4 + x5)
Thus the circulant graphs Cay (Z7, {3,4,5}), Cay (Z7, {1,3,5}), Cay (Z7, {1,4,5}), Cay (Z7, {5}) are
equivalent(excluding those containing 0 in the connection set,which are not considered as circulant graphs).

The above theorem is a means of getting a circulant graph equivalent to another and it is by just
multiplying it with a polynomial relatively prime to xn – 1. But it may sometimes produce only few equivalent
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ones. For example, if n = 15, the polynomial c(x) = x7 + x10 + x13 is relatively prime to x15– 1.Let X = Cay (Z15, {1,2,3}).
The polynomial it represents is a(x) = x + x2 + x3, c(x) a(x) = 1 + x + x8 + x9 + x10 + x11 + x12 + x13 + x14, c2(x) a(x) = 1 +
x + x2 + x6 + x7 + x8 + x12 + x13 + x14, c3(x) a(x) = x + x2 + x3 = a(x), thus produces only 3 different ones of which two
are not considered circulant graphs. The following theorem  gives us  a useful  way to bypass this difficulty.
3.7. Theorem :

Let β(x) be a polynomial in Rn but not a power of x. If β(x) is relatively prime to  xn – 1, then there exist
a polynomial δ(x) not a power of x and relatively prime to   xn – 1 that generates a multiplicative group of order n.
Proof :

Consider the set G of all polynomials in Rn relatively prime to   xn – 1. If α(x) and β(x) belong to G, then
α(x) β(x) also belongs to G. Also by Euclidean algorithm, there exist polynomials a(x) and b(x)  in F[x] such that
a(x) α(x) + b(x) (xn – 1) = 1.Therefore a(x) α(x) = 1(mod (xn – 1)) and that a(x) is relatively prime to xn -1. Thus α(x)
has inverse in G. Hence G is a group under multiplication modulo xn -1. We now claim that the order of every
element of G is a divisor of n.

Consider the sequence of powers {β(x), β2(x), β3(x), …….}of an element β(x) G.  Since it is a subset of

G and G is a finite group, βi(x) = βj(x) for come j < i. But then
βj(x) (1 + βi-j(x)) = 0 in Rn, hence
βj(x) (1 + βi-j(x)) = M(xn -1).

Since βj(x) is relatively prime to  xn -1, we get (1 + βi-j(x)) = 0 inRn. Therefore  βh(x) = 1 for some h and the set {β(x),
β2(x), β3(x), …… , βh(x)=1} is therefore a cyclic subgroup of G. We now prove that o(β) is a divisor of n.Let

β(x) = c0 + c1x + ……..+ cn-1 x
n-1. Then

βn+1(x) =  

           =  
            = c0 + c1x + ……..+ cn-1 x

n-1

            = β(x)

  βn+1(x) - β(x) = 0 in Rn.

                             = M(xn -1) in F[x]. That is
β(x) ( βn(x)  -1) = M(xn -1). Since gcd (β(x), xn -1) = 1, we get βn(x)  -1 = 0 in Rn or  βn(x)  = 1, thus o(β(x)) is a divisor
of n.

We now claim that there is a  Rn relatively prime to xn -1, not a power of x but of order n. Suppose

p1< p2< ….. < pk be the prime divisors of n. Choose an  G not a power of x but relatively prime to xn -1. If o(α)
= n, we take δ = α and the theorem holds. Suppose o(α)  n. Since o(α) is a divisor of n, we can take

o(α) = …..
Then

 = 1 

  = 1. Let

β = . Then   = 1, hence o(β) = p1

Take γ(x) = x β(x). If o(γ) = M( p1) =z  p1, then 1 = =  , hence   = 1. But then n = z p1. The
theorem therefore holds if we take δ = γ. On the other hand, if o(γ)  M(p1), then o(γ) = w pj for some j > 1 and gcd
(p1, w) = 1
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Now   = 1. Therefore   = 1. Hence  = 1. It follows that   = 1, hence w
p1pj = n. Now o(β) = p1, o(γ) = w pj  and gcd (p1, w pj) = gcd (p1, w) = 1. Therefore o(βγ) = w p1pj = n. The theorem
therefore holds if we take δ = βγ and the proof is complete.
3.8. Example :

Consider R7 =  

We have
x7 – 1 = (x-1)(x3 + x + 1)(x3 + x2 + 1)

The polynomial β(x) = x2 + x + 1  R7 is relatively prime to x7 – 1. Since n = 7, o(β) = 7. In fact,
 β2 = x4 + x2 + 1, β3 = x6 + x5 + x3 + x + 1, β4 = x4 + x + 1, β5 = x6 + x5 + x4 + x3 + 1, β6 = x6 + x5 + x3 + x2 + 1 and β7 = 1

3.9. Example :

R15 =  

We have
x15 -1 = (x-1)(x4 + x + 1)(x4 + x3 + 1)(x4 + x3 + x2 + x + 1)(x2 + x + 1)

The polynomial β(x) = x13 + x10 + x7 is relatively prime to x15 – 1
β4(x) = (x13 + x10 + x7)4 = x13 + x10 + x7 = β(x), therefore o(β) = 3. Take

δ(x) = x β(x) = x14 + x11 + x8, then 3(x)  1, δ5(x)  1. It follows that o(δ) = 15.
3.10. Example :

Consider the circulant graph X = Cay (Z15, {1,2}). We shall find all the circulant graph equivalent to X.
To do so we take the polynomial δ(x) = x8 + x11 + x14 which is relatively prime to x15 -1 and is of order 15.
Multiplying the polynomial k(x) = x + x2 represented by X with δ(x) and its powers, we get the following
polynomials.
1 + x+ x9 + x10 + x12 + x13, 1 + x2+ x3 + x8 + x9 + x14, x4 + x5, 1 + x+ x3 + x4 + x12 + x13,  x2+ x3 + x5 + x6 + x11 + x12, x7 + x8, 1
+x + x2 + x4+ x6 + x7, 1 + x5+ x6 + x8 + x9 + x14, x10 + x11,  x3+ x4 + x6 + x7 + x9 + x10,  x2+ x3 + x8 + x9 + x11+ x12, x13 + x14,  x6+
x7 + x9 + x10 + x12 + x13, 1 + x5 + x6 + x11 + x12 + x14.
This leads to the equivalent circulant graphs Cay (Z15, {4,5}), Cay (Z15, {2,3,5,6, 11,12}), Cay (Z15, {7,8}), Cay
(Z15, {10,11}), Cay (Z15, {3,4,6,7,9.10}), Cay (Z15, {2,3,8,9,11,12}), Cay (Z15, {13,14}),  Cay (Z15, {6,7,9,10,12,13}).

Each one of the above leads a subfamily of equivalent ones. For example Cay (Z15, {1,2}) leads the
subfamily consists of its cyclic shifts namely Cay (Z15, {2,3}), Cay (Z15, {3,4}), Cay (Z15, {4,5}), Cay (Z15, {5,6}),
Cay (Z15, {6,7}), Cay (Z15, {7,8}), Cay (Z15, {8,9}), Cay (Z15, {9,10}), Cay (Z15, {10,11}), Cay (Z15, {11, 12}), Cay
(Z15, {12, 13}) and Cay (Z15, {13,14}).

4. Use of cyclotomic cosets :
The concept of cyclotomic cosets can be used to determine equivalent circulant graphs when we deal

with binary cyclic codes of comparatively higher length.

4.1. Definition12:
If 0 < s < 2m – 1, and r is the smallest number with the property that 2r + 1 s ≡  s (mod(2m – 1))  then the

set {s, 2s, 22s, 23s, ….., 2rs} where each 2i s is reduced mod (2m – 1) is called the cyclotomic coset containing s.
4.2. Example :
Let X = Cay (Z63, {1,3,5}). The cyclotomic cosets of 63 are
C0 = {0}                                                 C1 = {1, 2, 4, 8, 16, 32}
C3 = {3, 6, 12, 24, 48, 33}                    C5 = {5, 10, 20, 40, 17, 34}
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C7 = {7, 14, 28, 56, 49, 35}                 C9 = {9, 18, 36}
C11 = {11, 22, 33, 44, 25, 50, 37}       C13 = {13, 26, 52, 41, 19, 38}
C15 = {15, 30, 60, 57, 51, 39}             C21 = {21, 42}
C23 = {23, 46, 29, 58, 53, 43}              C27 = {27,54,45}
C31 = {31,62, 61, 59,55,47}
From this computation we can tell that x63 – 1 is the product of nine irreducible polynomials of degree 6, two
irreducible polynomials of degree 3, one irreducible polynomial of degree 2 and one irreducible polynomial of
degree 1. Since there is only one binary irreducible polynomial of degree 1 which is x + 1 and only one binary
irreducible polynomial of degree 2 which is x2 + x + 1 and two binary irreducible polynomials of degree 3 which
are x3 + x + 1 and x3 + x2 + 1 we can infer that  x + 1, x2 + x + 1, x3 + x + 1 and x3 + x2 + 1 are factors of x63 – 1. Hence
there are no binary polynomials of degree less than or equal to 3 relatively prime to x63 – 1. At the same time,
x63 – 1 has no factors of degree 4. Hence every fourth degree irreducible polynomial is relatively prime to x63 -1.
One among them can therefore be taken as δ.
Let δ(x) = x4 + x + 1. Since 63 = 32 . 7. The factors of 63 are 3,7 and 9. We have
δ3(x) = x12 + x9 + x8 + x6 + x4 + x3 + x2 + x + 1  1
δ7(x) = x28 + x25 + x24 + x22 + x20 + x19 + x18 +x17 + x13  + x10 + x9 +  x7 + x5 + x3 + x2 +  x + 1   1
δ9(x) = x20 + x17 + x16 + x5 + x4 + x2 + 1  1
o(δ) is therefore not equal to 3 or 7 or 9. It follows that o(δ) = 63. Multiplying the polynomial k(x) = x + x3 + x5

determined by X successively by powers of δ, we get the leaders of the sub families of the equivalent class of
circulant graphs corresponds to the binary cyclic code C = < g(x) > where g(x) = gcd (k(x) , x63 -1) = gcd (x (x2 +
x + 1)2 ,x63 -1 )  = x2 + x + 1. Multiplying each of the subfamily leaders successively by powers of x, we get the

members of the subfamily it represents. We can thus find all the members of the equivalent class 
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