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Abstract

   A mixed quadrature rule, blending Clenshaw-Curtis five point rule in two dimensions and Gauss-Legendre three
point rule in two dimensions, is formed. The mixed rule has been imposed with some test integrals and found to be more
effective than that of its constituent rules.
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1  Introduction

Real definite integrals of the type

I f( ) 
a

b

c

d
zz f x y dxdy = f x y dxdy( , ) ( , )zz

-1-1

1 1
(1.1)

in two dimensions, where ),( yxf  is defined over the domain 1,1][1,1][  , have been successfully
approximated by several authors6,7,8,9. Some of the authors14, 15 also used mixed quadrature rule to evaluate
integrals of the type (1.1). The mixed quadrature rule involves construction of symmetric quadrature rule of
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higher precision as a linear/ convex combination of two other rules of equal lower precision. Several authors 1,

2, 3, 10, 11, 12, 13 also successfully applied mixed quadrature rule to evaluate real definite integrals in one dimension.
If we consider a Gauss-Legendre rule and a Clenshaw-Curtis rule in two dimensions having same

precision, Clenshaw-Curtis rule is better than Gauss-Legendre rule. An n-point Gaussian rule is of precision

12 n , while the precision of an n -point Clenshaw-Curtis rule is n . In general, Gauss type rule is of higher
precision than that of Clenshaw-Curtis type when same abscissae are used.

In this paper, taking the advantage of the fact that Gauss-Legendre 3-point rule and Clenshaw-Curtis
5-point rule in two dimensions are of same precision ( .,.ei  precision 5) we formed a mixed quadrature rule of

higher precision ( .,.ei  precision 7) taking linear combination of these rules. The mixed rule so formed has been
tested on different integrals giving better results than Clenshaw-Curtis quadrature rule.

2  The Clenshaw-Curtis Quadrature Rule :
The Clenshaw-Curtis method4 essentially approximates a function )(tf  over any interval

],[ hh    using the Chebyshev polynomials )(xTr  of degree n ,  .,.ei

1)1()('=)(=)(
0=

 xxTaxFtf rr

n

r
 (2.1)

 where ra  are the expansion coefficients and '  denotes a finite sum whose first term is to be halved before

beginning to sum. That is,

)()()(
2
1=)( 1100 xTaxTaxTaxF nn   (2.2)

 Collocating with )( hxf   at the 1n  points
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 

 (2.3)

One can evaluate the expansion coefficients ra .

The Chebyshev polynomials )( ir xT  can be expressed as

   0)),(cos(cos=)( 1  rxrxT iir  (2.4)
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The notation '  means that the first and last terms are to be halved before summation begins. The

orthogonality of the cosine function [5] with respect to the points 







n
ixi
cos=  is expressed by
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Substituting equation (2.6) into equation (2.5), we obtain
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Denoting the integral of )(tf  over the interval ],[ hh    by I  and replacing t  by hx  in equation,
we get

dxhfhfI )(=)(
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Substituting the values of ra  (as given in equation (2.7)), we obtain
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we get
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with 4=n
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3. Construction of The Mixed Quadrature Rule of Precision Seven in Two Dimensions

The Clenshaw-Curtis five point rule in one dimension is
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So the Clenshaw-Curtis five point rule in two dimensions is
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and the Gauss-Legendre three point rule in one dimension is
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So  the Gauss-Legendre three point rule in two dimension is
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 Let )(2

5
fECC  and )(2

3
fEGL  denote the error terms in approximating the integral )( fI  by the rules (3.2) and

(3.4) respectively. Let
)()(=)( 2

5

2

5
fEfRfI CCCC   (3.5)

)()(=)( 2

3

2

3
fEfRfI GLGL   (3.6)

Using Maclaurin’s expansion of functions in two variables in equations (3.2) and (3.4) we get

        (0,0)(0,0)
907200

1(0,0)(0,0)
18900

1=)( 0,88,00,66,0
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5
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1
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         (0,0)(0,0)
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2

3
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           (0,0)(0,0)
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1
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This shows that the rules (3.2) and (3.4) are of precision 5.

Now multiplying the equations (3.5) and (3.6) by 5
1

 and 12
1

  respectively, and then adding the

resulting equations we obtain
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This is the desired mixed quadrature rule of precision seven for approximate evaluation of )( fI . The truncation
error generated in this approximation is given by
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 The rule (3.10) may be called as a mixed type rule as it is constructed from two different types of rules of the
same precision ( .,.ei  precision 5).

4  Error Analysis :
An asymptotic error estimate and error bound of the rule (3.10) are given in theorems (4.1) and (4.2)

respectively.
Theorem  4.1: Let ),( yxf  be a sufficiently differentiable function in the closed interval

1,1][1,1][  . Then the error )(2

35
fE GLCC  associated with the rule )(2

35
fR GLCC  is given by

 (0,0)(0,0)
1134000

1)( 0,88,0
2

35
fffE GLCC ¬
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Theorem 4.2: The bound for the truncation error )(2
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which gives only a theoretical error bound as ),( 11   and ),( 22   are unknown points in 1,1][1,1][  .

It shows that the error in the approximation will be less if the points ),( 11  , ),( 22   get closed to each other..
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5  Numerical Verification :
Table  1.  Comparison of the Mixed Quadrature Rule with Clenshaw-Curtis 5-point Rule in Approximation of

some Real Definite Integrals in two dimensions
        Approximate Value           Error Approximated

Integrals  Exact Value  )(2

5
fRCC

 )(2

3
fRGL  )(2

35
fR GLCC

 )(2

5
fECC

 )(2

3
fEGL        )(2

35
fE GLCC

e dxdyx y
 zz 1
1

1
1

5.524391382167262 5.524264412485792 5.5240367316988 5.524393508320651 0.000126969681470 0.000307703850274    -2.12615338810-6

y
e

x
x dydx00

1 2zz 0.04391861928124 0.043907646528054 0.043892518086722 0.043918452557576  0.0000105154000704 0.000025643841401     -2.9062945210-7

e- dydxx y( 2 2

1
1

1
1 

 zz ) 2.2309851414041345 2.238065053066174 2.24604 2.23268662399156    -0.007079911662039 -0.015054858595865  -0.001383520995021

y
y dxdy2

2
1
1zz              

1
2 0.491259503108319 0.502512967232805 0.498221314447972 0.00874096891680 -0.002512967232805  0.001778685552027

6  Conclusion
 Above examples give a clear picture about the effectiveness of imposing mixed quadrature rule rather than

its constituent rules. The mixed quadrature rule gives better result in comparison its constituent rules with the
precision enhancement and also it has been tested this mixed rule we have applied here also very much effective
than that of some previous paper15 which is the basic intuition behind this paper.
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