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Abstract

Amixed quadrature rule, blending Clenshaw-Curtis five point rule in two dimensions and Gauss-Legendre three
point rule in two dimensions, is formed. The mixed rule has been imposed with some test integrals and found to be more
effective than that of its constituent rules.
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quadrature rule RéCSGL3 ().
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1 Introduction

Real definite integrals of the type

db 11
L(F) =11 f(xy)dxdy=1[ [ f(xy)dxdy (11)
ca -1-1

in two dimensions, where f(X,y) is defined over the domain [-1,1]x[-1,1], have been successfully

approximated by several authors®"#°. Some of the authors'* *° also used mixed quadrature rule to evaluate
integrals of the type (1.1). The mixed quadrature rule involves construction of symmetric quadrature rule of
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higher precision as a linear/ convex combination of two other rules of equal lower precision. Several authors *

2:3,10.11.12.13 5150 successfully applied mixed quadrature rule to evaluate real definite integrals in one dimension.
If we consider a Gauss-Legendre rule and a Clenshaw-Curtis rule in two dimensions having same
precision, Clenshaw-Curtis rule is better than Gauss-Legendre rule. An n-point Gaussian rule is of precision

2n —1, while the precision of an n -point Clenshaw-Curtisrule is N. In general, Gauss type rule is of higher

precision than that of Clenshaw-Curtis type when same abscissae are used.
In this paper, taking the advantage of the fact that Gauss-Legendre 3-point rule and Clenshaw-Curtis

5-point rule in two dimensions are of same precision (i.€., precision 5) we formed a mixed quadrature rule of

higher precision ( 1.6., precision 7) taking linear combination of these rules. The mixed rule so formed has been
tested on different integrals giving better results than Clenshaw-Curtis quadrature rule.

2 The Clenshaw-Curtis Quadrature Rule :
The Clenshaw-Curtis method” essentially approximates a function f(t) over any interval

[ —h, & + h] using the Chebyshev polynomials T, (x) of degree n, i.e.,
fO=F0=Y"aT,(x) (-1<x<I) 2.1)
r=0

where a, are the expansion coefficients and z denotes a finite sum whose first term is to be halved before
beginning to sum. That is,

1
F(x) :EaOTO(X)+a’1T1(X)+"'+anTn(X) (2.2)
Collocating with f (o + hx) atthe n+1 points
X, = cos('ﬁ} (i=01,---,n) (2.3)
n

One can evaluate the expansion coefficients a, .
The Chebyshev polynomials T, (X;) can be expressed as

T (x)=cos(rcos(x)), r=0 (2.4)
_ (rin}
= cos| —
n

>3 8T, (%7, (%)

n
i=0 k=0

‘a, Zn:” cos(ki—”J cos(“—”} (2.5)

n
k=0 =0 n n

Then

3 f (@ + )T, (%)
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The notation Z" means that the first and last terms are to be halved before summation begins. The

iz
orthogonality of the cosine function [5] with respect to the points X; = COS(—J is expressed by

n
n, r=k=0or n
L [kiﬂ} [I’iﬂj n
> "cos| — |cos| — | =4, O<r=k<n
= n n 2 (2.6)
0, r=k

Substituting equation (2.6) into equation (2.5), we obtain

n

—a,, 0<r=k<n
D" f (o +hx)T,(x) =+ na,, r=k=n
= 0, r=k

Hence

2N @+ h)T.(x),  (F=01,-,n1)

n f(a+hx)T, (%), (r =n) (2.7)

S|~ S

"
i=0

Denoting the integral of f (t) over theinterval [a —h, o + h] by | andreplacing t by ¢ + hx in equation,
we get

I(f):h.lff(a+h)dx

Assuming
we write

1n
L, =h[>"aT, (x)dx
_1i=0

n 1
=h'a, [T, (x)dx
i=0 -1

Substituting the values of a_ (as given in equation (2.7)), we obtain
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n n 1
| (f)= Z"%Z" f (o )T, (%) [T, (x)le
r=0 i=0 -1
Since
1 -2 _
[T (dx =427 = even
-1 0, r = odd
we get
I —hz w f (a +hx;)
where
Wi:hZ” 21 T, (%) i=0,1,---,n)
1‘:0 r _l
withn=4

I(f)——{f(a h)+8f(a

—\/hij+12f(a)+8f[a+%j+ f(a+h)}

3. Construction of The Mixed Quadrature Rule of Precision Seven in Two Dimensions

The Clenshaw-Curtis five point rule in one dimension is

1(f) = jf(x)dx Rec, ()= {f(l)+8f( \/laj+12f(0)+8f(%j+f(l)}

Sothe Clenshaw Curtis five pomt rule in two dimensions is

1(F)= [ [ F0x )y = R, ()

-1-1

1

1
152{1‘( 1, 1)+8f[ 1,—\/§j+12f(—1,0)+8f[—1,\/§j+f(—l,l)}

+1§2{f( \%

12
+E{f(0 1)+8f(

__jm

%|

Sl

Joul- o

ofsi(- 55 (Jlélﬂ

f(00)+8f( \/%}rf(o,n}

5 ol ﬁ)”%’lﬂ
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(2.8)

(2.9a)

(2.9b)

(2.10)

(3.1)
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1 1 1
+E{f(l,—l)+8f(l,—$j+12f(1,0)+8f(1,$j+ f(l,l)} (32)

and the Gauss-Legendre three point rule in one dimension is

I(f):jf(x)dXzRGLs(f):;{5f(-£}+8f(0)+5f(\/§ﬂ (3.3)

So the Gauss-Legendre three point rule in two dimension is

L(£) = [ [ (x y)dxdy = RS, (F)

-1-1

B )
Al wensiod]
S () )

Let Eécs(f) and EéL3(f) denote the error terms in approximating the integral I ( f) by the rules (3.2) and

(3.4) respectively. Let
|(f):Réc5(f)+E§c5(f) (3.5)

I(f)=Re, (f)+Eg () (3.6)
Using Maclaurin’s expansion of functions in two variables in equations (3.2) and (3.4) we get

[ 60(0 0) + foe(o 0)]+ [ 8,0 (0,0) + fo,s (0’0)]

CCS( )= 907200

[fe,z (0,0)+ fyq (0’0)]"‘"' (3.7)

18900
1

+
113400
) _ 1
EGLS(f) ~ 7875 [ 60(0 0) + foe(o 0)]

1

+ PR
47250
This shows that the rules (3.2) and (3.4) are of precision 5.

m[ 80(0,0) + fog (0’0)]

[£5,(0,0)+ f,6(0,0)]+--- (3.9)

1 1
Now multiplying the equations (3.5) and (3.6) by g and —E respectively, and then adding the

resulting equations we obtain
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I(f)-—[lZR (f)- 5RL3(f)] 1[125 (f)-5EZ (f)
or 1(f)=Rq (F)+E& o (1) (3.9)

where Récs%(f):%[lZRc ()-5R2, ()] (3.10)

This is the desired mixed quadrature rule of precision seven for approximate evaluation of | ( f ). The truncation
error generated in this approximation is given by

1
Elepo, (1) =222 (1)-5EL, ()]
1
== _[£,,(0,0)+ f,,(0,0)]+---
Taro5g L0 @0)+ fos(0.0)

The rule (3.10) may be called as a mixed type rule as it is constructed from two different types of rules of the

(3.11)

same precision ( 1.6., precision 5).

4 Error Analysis :

An asymptotic error estimate and error bound of the rule (3.10) are given in theorems (4.1) and (4.2)
respectively.

Theorem 4.1: Let f(X,y) be a sufficiently differentiable function in the closed interval

[<1,1] x[-1,1] . Then the error E2 (f) associated with the rule RSCSGLS (f) isgiven by

CCGLg

f30(0.0) + £ (0,0)]

E flzg———
cogety )‘ 1134000‘[
Proof. Follows immediately from equation (3.11).

Theorem 4.2: The bound for the truncation error EZ. o, (F)=1(F) - Réc cor, ()

EéCSGLG(f)‘ < M‘gz —51\><\'72 _’71‘

where M = max [£,0(x.0)+ f,(0,)]
—1<y<1

Proof. We have from (3. 7) and (3.8)

CC5( )= [6,0(52’772)"' fo,e(ﬁzinz)]’ (&,m,) e[-1,1]x[-1,1]
GLS( ) —

18900

7875 [ fo0 (&) + fo6 (& 771)]’ (&) e[-1,1]x[-1,1]

We know
1
Eleyo, (1) = 212EL, (1)-5E2, (1)]

1

~:l. 1
[ { 60(5210)"‘ foe(o 772)} 1575

711575 { 60(51’0)"‘ foe(o 771)}}
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1
= o [{ 60(E2,0)+ fo6(0,1,) 1= {fo0 (£,0) + Fog (0,771)}]

22
= Tlo%s j [[f20(x,0)+ fo7 (0, y)Jdxdy  (assumingé, < &,andn, <n,)
rié

77252
Hence  [Ede.a (L 11025 | [£10(x.0) + 370, y) ixdy
1 77252
< 1655 | 200600+ 3,0, y) ]y
77151
f(x, y) isdefined on a closed and bounded rectangle[-1,1]x[-1,1],
hence compact and so f(x, y) attains its maximum over the domain
[-1,1]x[-1,1].
77252
0 [EZe (F )‘ MM [ [oxdy, where M =max [f,(x0)+ fo; 0,y)]
m e -1<y<1

M
- m (52 _51)x(772 _771]

which gives only a theoretical error bound as (&,,7,) and (&,,7,) areunknown pointsin [-1,1]x[-1,1].

It shows that the error in the approximation will be less if the points (&,,7,), (&,,7,) getclosed to each other.
Corollary 4.1 : The error bound for the truncation error EZ. oLy (f) is given by
4M

2
CCgGLy ( )‘ S—

11025

Proof. we know from theorem (4.2) that

ECZZCSGLS( )‘ 11025|(52 51)X(772_771]! (&0m)s(&50m,), € [-1,1]x[-1,1]
where M = maé‘[f7,o (x,0)+ £, (0, Y)]

—1<y<1

choosing [&,-¢&|<2 and |n,—-m|<2

weget

2
ECCSGLS( )‘ 11025
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5 Numerical Verification :
Table 1. Comparison of the Mixed Quadrature Rule with Clenshaw-Curtis 5-point Rule in Approximation of
some Real Definite Integrals in two dimensions

285

Integrals

Exact Value

Approximate Value

Error Approximated

RZ, (1)

Rz, (D)

RéCSGI?) ( f )

EZc, ()

E2 (D)

EZ e ()

Llllllex +Y dxdy
2

Lol Ldydx

Iy 0et =) dydx

lezyg dxdy
2

5.524391382167262
0.04391861928124

2.2309851414041345

1
2

5.524264412485792

0.043907646528054
2.238065053066174

0.491259503108319

5.5240367316988

0.043892518086722

2.24604

0.502512967232805

5.524393508320651

0.043918452557576

2.23268662399156

0.498221314447972

0.000126969681470

0.0000105154000704]

-0.007079911662039

0.00874096891680

0.000307703850274

0.000025643841401

-0.015054858595865

-0.002512967232805

-2.126153388x10°°
-2.90629452x10°7

-0.001383520995021

0.001778685552027

6 Conclusion

Above examples give a clear picture about the effectiveness of imposing mixed quadrature rule rather than

its constituent rules. The mixed quadrature rule gives better result in comparison its constituent rules with the
precision enhancement and also it has been tested this mixed rule we have applied here also very much effective
than that of some previous paper'® which is the basic intuition behind this paper.
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