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Abstract

In this paper we discuss the batch arrival vacation model appear in many situations such as computer
communication systems. The common method of studying the batch arrival queueing system with vacations is
by using supplementary variables.

Key  words: General Service, Multiple Vacation, Bulk Queue.

Introduction

Consider an  /G/1M X  queue where customers arrive in batches according to a passion process
with rate . The batch size X is a random variable, with the distribution function and p.g.f.
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Respectively, the mean of g= E (X); and the second moment of )2E(X(2)g  . The service time i.i.d.
random variable denoted by B, with general distribution B (x) and probability density b(x). The vacation time
also i.i.d. random variables denoted by v, with general distribution V (x) and probability density n(x). In addition
the service time and the vacation time are independent. To study the queue length distribution, we use the
residual service time or the residual vacation time as the supplementary variable. At an arbitrary time, the study
state of the system can be described by the following random variables:1-5
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L The number of customers present.

B̂      = The residual service time for customer in service.

V̂     = The residual service time for the server on vacation
Now
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By the Steady state transitions, we obtain the following differential difference equations:-
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Taking the LST on both sides of the equations (3) we get
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also we define



306 A Vacation Model  /G/1M X : (E, MV) with General Service Bulk Queue.

,nZ(o)n1n
(Z,0) 




 ,nZ(o)nw

0n
(Z,0)w 












1n
,nz(s)*

ns)(z,*  





0n
)5(....................nz(s)*

nws)(z,*w

Multiplying the second equation by nz , summing over n, and using the first equation of (4) and G (z),
we have
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Similarly, multiplying the fourth equation by nZ , summing over n, and using the third equation of (4), we have6-8
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Putting (Z)Gλλs   into equation (6) and (7), we have
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Next, inserting z=0 in the second equation of (8) and using    w (0,0) = 0w (o) we get

..(9)........................................)λ(*V1(o)/1)(λ*V(o)0w 



  

substituting (9) into the second equation of (8) we get
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from the first equation of (8) and (10), we obtain
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substituting (9), (10) and (11)  into (6) we get
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substituting (9) and (10) into (7) we get
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since 10)(1,*w0)(1,*   using the L' Hospital rule on (12) and (13) we get
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Therefore the expected number of customers in the system is
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Now we give the waiting time and the busy-period analysis for this model. The stationary waiting time

νW  of an arbitrary or test customer in an arriving batch can be decomposed into the sum of independent

random variables. We first write 2W1WνW  , where WW1 is the waiting time of the first customers in the

test customers batch and W2 is the waiting time for the service of the batch-mates who are served before the
test customer under consideration. The LST of W1 can be written as9-11
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Let nr (n=1,2....) be the probability of the test customer being in the nth position of the arriving batch.
Using the result of renewal theory, we have
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Hence we have
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Using (15) (16) and the fact of W1 and W2 are independent, It follows that-
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This expression gives the property of the stationary waiting time1-11.
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