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Abstract

In this paper, we develop a neutrosophic optimization (NSO) approach for optimizing the design of
plane truss structure with single objective subject to a specified set of constraints. In this optimum design
formulation, weight of truss and deflection of loaded joint are the objective functions. The design variables and
constraints are the cross-sectional areas and the stresses in members respectively. A classical truss optimization
example is presented herein to demonstrate the efficiency of the neutrosophic optimization approach. The test
problem includes a two-bar planar truss subjected to a single load condition.  This single-objective structural
optimization model is solved by fuzzy as well as neutrosophic  optimization approach. Numerical example is
given to illustrate our NSO approach. The result shows that the NSO technique plays a significant role in
finding the best ever optimal solutions.

Key word : Neutrosophic Set, Single Valued Neutrosophic Set, Neutrosophic Optimization, Single-
Objective Structural optimization.
1.  Introduction

The research area of optimal structural design has been receiving increasing attention from both
academia and industry over the past four decades in order to improve structural performance and to reduce
design costs. However, in the real world, uncertainty or vagueness is prevalent in the Engineering Computations.
In the context of structural design the uncertainty is connected with lack of accurate data of design factors. This
problem has been solving  by  use of fuzzy mathematical algorithm for dealing with this class of problems. Fuzzy
set (FS) theory has long been introduced to deal with inexact and imprecise resources by Zadeh1, As an
application Bellman and Zadeh2 used the fuzzy set theory to the decision making problem.In such extension,
Atanassov3 introduced Intuitionistic fuzzy set (IFS) which is one of the generalizations of fuzzy set theory and
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is characterized by a membership function, a non membership function and a hesitancy function. In fuzzy sets
the degree of acceptance is only considered but IFS is characterized by a degree of acceptance  and degree of
rejection so that their sum is less than one. As a generalization of fuzzy set and intuitionistic fuzzy set F.
Smrandache4 introduced a new  notion which is known as neutrosophicset (NS in short) in 1995. NS is
characterized by degree of  truth membership, degree of indeterminacy membership and degree of falsity
membership. The concept of NS generates the theory of neutrosophic sets by expressing indeterminacy of
imprecise information. This theory is considered as complete representation of structural design problems like
other decision making problems. Therefore, if uncertainty is involved in a structural model we use fuzzy theory
while dealing indeterminacy, we need neutrosophic theory.

This is the first time neutrosophic optimization techniqeis applied in structural design. Several researchers
like Wang et al.5 first applied α-cut method to structural designs where the non-linear problems were solved
with various design levels α, and then a sequence of solutions were obtained by setting different level-cut
value of α. To design a four–bar mechanism for function generating problem Rao6 used  the same α-cut method.
Structural optimization with fuzzy parameters was developed by Yeh et al.7. Xu8 used two-phase method for
fuzzy optimization of structures. A level-cut of the first and second kind approach used by Shih et al.9 for
structural design optimization problems with fuzzy  resources. Shih et al.10 developed an alternative α-level-
cuts methods for optimum structural design with fuzzy resources. Dey et al.11 used generalized fuzzy number in
context of a structural design. Dey et al.12 developed parameterized t-norm based fuzzy optimization method for
optimum structural design. Also, a parametric geometric programming is introduced by Dey et. al.13 to Optimize
shape design of structural model with imprecise coefficient.

A transportation model was solved by Jana et al.14 using multi-objective intuitionistic fuzzy linear
programming. Dey et al.15 solved two- bar truss non linear problem by using intuitionistic fuzzy optimization
problem. Dey et al.16 used intuitionistic fuzzy optimization technique for multi objective optimum structural
design.

The present study investigates computational algorithm for solving single-objective structural problem
by single valued NSO approach. The impact of truth, indeterminacy and falsity membership function in such
optimization process also has been studied here. A comparison is made numerically between fuzzy optimization
technique and neutrosophic optimization technique. From our numerical result, it is clear that neutrosophic
optimization technique provides better results than fuzzy optimization.

2. Single-objective Structural Model :
In sizing optimization problems,the aim is to minimize single objective function,usually the weight of

the structure under certain behavioural constraints on constraint and displacement. The design variables are
most frequently chosen to be dimensions of the cross sectional areas of the members of the structures. Due to
fabrications limitations the design variables are not continuous but discrete for belongingness of cross-sections
to a certain set. A discrete structural optimization problem can be formulated in the following form

 Minimize WT A                                                                                                                    (1)

    , 1,2,.....,i isubject to A A i m    

, 1,2,.....,d
jA R j n 

where  WT A  represents objective function,  i A  is the behavioural constraints and  i A   denotes

the maximum allowable value, m and n are the number of constraints and design variables respectively. A given
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set of discrete value is expressed by dR and in this paper objective function is taken as

 
1

m

i i i
i

WT A l A



and constraint are chosen to be stress of structures as follows

 i iA 


with allowable tolerance 0
i for 1,2,.........,i m

Where i  and il  are weight of unit volume and length of thi  element respectively,, m  is the number of

structural element, i  and 0
i  are the thi  stress, allowable stress respectively..

3.  Mathematical preliminaries
3.1. Fuzzy Set

Let X be a fixed set. A fuzzy set A set of X is an object having the form     , :AA x T x x X 

where the function   : 0,1AT X   defined  the truth membership of the element x  X to the set A.

3.2.    Intuitionistic Fuzzy Set :

Let a set X be fixed. An intuitionistic fuzzy set or IFS  iA  in  X  is an object of the form
     , ,i

A AA X T x F x x X     where   : 0,1AT X   and   : 0,1AF X    define the truth membership

and falsity membership respectively, for every element of     , 0 1A Ax X T x F x    .

3.3.    NeutrosophicSet

Let a set  X  be a space of points (objects) and  x  X. A neutrosophic set  nA  in X is defined by a truth
membership function   AT x , an indeterminacy-membership function   AI x  and a falsity membership function
  AF x  and having the form        , , ,n

A A AA x x I x F x x X    .    ,AT x    AI x and   AF x
are real standard or non-standard subsets of  ]0 ,1 [  . That is
   : ]0 ,1 [AT x X  
   : ]0 ,1 [AI x X  
   : ]0 ,1 [AF x X  

There is no restriction on the sum of    ,AT x    AI x  and   AF x  so

      0 sup sup 3A A AT x I x F x     .

3.4.    Single Valued Neutrosophic Set :

Let a set X be the universe of discourse. A single valued neutrosophic set  nA   over X is an object

having the form        , , ,n
A A AA x T x I x F x x X     where     : 0,1 , : 0,1A AT X I X 

and   : 0,1AF X   with       0 3A A AT x I x F x     for all  x X .



3.5.  Complement of Neutrosophic Set :
Complement of a single valued neutrosophic set A is denoted by c(A) and is defined by

      ,Ac AT x F x      1 ,Ac AI x F x       Ac AF x T x  

3.6.  Union of Neutrosophic Sets :
The union of two single valued neutrosophic sets A and B is a single valued neutrosophic set C,

written as  C A B  , whose truth membership, indeterminacy-membership and falsity-membership functions
are given by
 

        max , ,A Bc AT x T x T x

 
        max ,A Bc AI x I x I x

 
        min ,A Bc AF x F x F x  for all  x X

3.7.  Intersection of  Neutrosophic Sets :
The intersection of two single valued neutrosophic sets A and B is a single valued neutrosophic set  C,

written as  C A B  , whose truth membership, indeterminacy-membership and falsity-membership functions
are given by

 
        min ,A Bc AT x T x T x

 
        min ,A Bc AI x I x I x

 
        max ,A Bc AF x F x F x  for all  x X

4. Mathematical Analysis :
4.1. Neutrosophic Optimization Technique to Solve Minimization Type Single-Objective  :

Let a nonlinear single-objective optimization problem be

  
  1, 2,.............,

0
j j

Minimiz f x

g x b j m

x

 


                                                  (2)

Usually constraints goals are considered as fixed quantity .But in real life problem ,the constraint goal
can not be always exact. So we can consider the constraint goal for less than type constraints at least bj and it

may possible to extend to  0
j jb b . This fact seems to take the constraint goal as a neutrosophic fuzzy set and

which will be more realistic descriptions than others. Then the NLP becomes NSO problem with neutrosophic
resources, which can be described as follows
  Minimiz f x                                                                                                   (3)

   1, 2,....,n
j jg x b j m 

 0x 
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To solve the NSO (3), following warner’s (1987) and Angelov (1995) we are presenting a solution
procedure for single-objective NSO problem (3) as follows

Step-1: Following warner’s approach solve the single objective non-linear programming problem without

tolerance in constraints (i.e   j jg x b ), with tolerance of acceptance in constraints (i.e    0
j j jg x b b  )

by appropriate non-linear programming technique
Here they are
Sub-problem-1
  Minimize f x   (4)
   1, 2,.....,j jg x b j m 
 0x 
Sub-problem-2
  Minimiz f x  (5)
   0 , 1,2,.......,j j jg x b b j m  
 0x 
we may get optimal solutions     * 1 * 1,x x f x f x   and     * 1 * 1,x x f x f x  .
Step-2: From the result of step 1 we now find the lower bound and upper bound of objective functions. If

 
     , ,T I F

f x f x f xU U U  be the upper bounds of truth, indeterminacy, falsity function for the objective respectively

and       , ,T I F
f x f x f xL L L  be the lower bound of truth, indeterminacy, falsity membership functions of objective

respectively then
 

             1 2 1 2max , , min , ,T T
f x f xU f x f x L f x f x 

 
                , 0F T F T T T

f x f x f x f x f x f x f x f xU U L L where U L      

 
                , 0I T I T T T

f x f x f x f x f x f x f x f xL L U L where U L      
Step-3:  In this step we calculate membership for truth, indeterminacy and falsity  membership function of
objectiveas follows

 

    

   

   
   

     

   

1

0

T
f x

T
f x T T

f x f x f xT T
f x f x

T
f x

if f x L

U f x
T f x if L f x U

U L

if f x U

 

      
 

 

    

   

   
   

     

   

1

0

I
f x

I
f x I I

f x f x f xI I
f x f x

I
f x

if f x L

U f x
I f x if L f x U

U L

if f x U

 

      
 
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    

   

   

   
     

   

0

1

F
f x

F
f x F F

f x f x f xF F
f x f x

F
f x

if f x L

f x L
F f x if L f x U

U L

if f x U

 

    
 

where  are non-zero parameters prescribed by the decision maker.
Step-4:  In this step using linear membership function we calculate, indeterminacy and falsity membership
function for constraints as follows

 

    

 
   

 

0
0

0

0

1

0

j

j j

j j j
j j j j jg x

j

j j

if g x b

b b g x
T g x if b g x b b

b

if g x b

 

  

      
 

 

    

 

    

 
   

   

1

0

j

j j

j

j

j j

j jg x
j j j jg x g x

g x

j j g x

if g x b

b g x
I g x if b g x b

if g x b








 


    

  

 

    

   

   

 
   

 

0
0

0

0

1

j

j

j j

j

j j g x

j j g x
j j j j jg x g x

j g x

j j j

if g x b

g x b
F g x if b g x b b

b

if g x b b








  


      
  

where    are non-zero parameters prescribed by the decision maker and for

 
   

01, 2,....., 0 ,
j j jg x g xj m b    .

Step-5: Now using NSO for single objective optimization technique the optimization problem (2) can be formulated
as

Maximize  Max    
Such that

    ;f xT x    ;
jgT x   (6)

 
 
  ;

f x
I x      ;

jgI x 

 
 
  ;

f x
F x      ;

jgF x 
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3;     ; ;    
  , , 0,1  

Where              min , 1,2,.......,n
j jf x g xD

x T f x T g x for j m   

             min , 1,2,.......,n
j jf x g xD

I x I f x I g x for j m     and

             min , 1,2,.......,n
j jf x g xD

x F f x F g x for j m   

are the truth, in determinacy and falsity membership function of decision set
 

   
1

m
n n n

j
j

D f x g x


  .

5. Solution of Single-objective Structural Optimization Problem (SOSOP) by Neutrosophic Optimization
Technique :

To solve the SOSOP (1), step 1 of 4 is used and we will get optimum solutions of two sub problem as A1

and A2. After that according to step 2 we find upper and lower bound of  membership function of objective function

as  
     , ,T I F

WT A WT A WT AU U U  and  
     , ,T I F

WT A WT A WT AU U U  where  
      1 2max , ,T

WT AU WT A WT A

 
      1 2min , ,T

WT AL WT A WT A  
         ,F T F T

WT A WT A WT A WT A WT AU U L L     where

 
      0 T T

WT A WT A WT AU L   ;           ,I T I T
WT A WT A WT A WT A WT AL L U L     where

 
 

      0 T T
WT A WT A WT AU L  

Let the  linear membership function for objective be

 

    

   

   
   

     

   

1

0

T
WT A

T
WT A T T

WT A WT A WT AT T
WT A WT A

T
WT A

if WT A L

U WT A
T WT A if L WT A U

U L

if WT A U

 

      
 

 

    

   

      
 

       

     

1

0

T
WT A

T
WT A WT A T T

WT A WT A WT A WT A
WT A

T
WT A WT A

if WT A L

L WT A
I WT A if L WT A L

if WT A L








 

        

 
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    

     

      
     

       

   

0

1

T
WT A WT A

T
WT A WT A T T

WT A WT A WT A WT AT T
WT A WT A WT A

T
WT A

if WT A L

WT A L
WT A if L WT A U

U L

if WT A U




 



  

         



and constraints be

 

    

 
   

 

 

0
0

0

0

1

0

i

i i

i i i
i i i i iA

i

i i i
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where  ,   are non-zero parameters prescribed by the decision maker and for
 

   
01, 2,..., 0 ,

i i ix Aj m      
then  neutrosophic optimization problem can be formulated as

  Maximize    
such that

     ;WT AT WT A       ;
i iAT A    

 
 

   ;
WT A

I WT A         ;
i iAI A  

 
 

   ;
WT A

F WT A        
i iAF A  

    ;i ix 
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 3; ; ;          
  , , 0,1   
The above problem can be reduced to following crisp linear programming problem, whenever linear membership
are considered, as
  Maximize                                                                                                                   (7)
Such that
          ;

T T T
WT A WT A WT AWT A U L U  

             ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

             ;
T T T
WT A WT A WT A WT A WT AWT A U L L      

          ;T T T

T T T
T A A AA U L U     

             ;T T T T T

T T T
T A A A A AA U L U           

             ;T T T T T

T T T
T A A A A AA U L L           

         ;C C C

T T T
C A A AA U L U     

              ;C C C C C

T T T
C A A A A AA U L U           

 3;    
 ; ;    

  , , 0,1   
This crisp nonlinear programming problem can be solved by appropriate mathematical algorithm.

6. Numerical Illustration :
A well-known two-bar planar truss structure (Fig.1) is considered. The design objective is to minimize

weight of the structural  1 2, , BWT A A y of a statistically loaded two-bar planar truss subjected to stress

 1 2, ,i BA A y constraints on each of the truss members 1, 2i  .
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Fig. 1. Design of the two-bar
planar truss



The multi-objective optimization problem can be stated as follows

    22 2 2
1 2 1 2, , B B B B BMinimize WT A A y A x l y A x y      (8)

Such that
 

   22

AB 1 2
1

, , ;B B T
B AB

P x l y
A A y

lA
 

 
    

 
 

2 2

BC 1 2
2

, , ;B B C
B BC

P x y
A A y

lA
 


    

 0.5 1.5By 

 
1 20, 0;A A 

where P   nodal load ;   volume density ; l  length of AC ; Bx   perpendicular distance from AC to

point B.  A1 = Cross section of bar-AB; A2 = Cross section of bar- BC. [T]= maximum allowable tensile stress,
[C] = maximum allowable compressive stress and  yB = y -co-ordinate of node B. Input data are given in table 1.

Table  1.  Input data for crisp model (7)
Applied Volume Length l Maximum allowable Maximum allowable Distance of

load P density     m tensile stress compressive stress xB  from

(KN) (KN / m3)   T    Mpa   T    Mpa AC  (m)
130 90

with fuzzy with fuzzy
100 7.7 2 region region 1

20 10
 
Solution : According to step 2 of 4,we find upper and lower bound of  membership function of objective function

as      , ,T I F
WT A WT A WT AU U U  and      , ,T I F

WT A WT A WT AU U U  where    14.23932 , 12.57667 ,T F T I
WT A WT A WT A WT AU U L L   

   14.23932 , 12.57667 ,T F T I
WT A WT A WT A WT AU U L L        12.57667F

WT A WT AL    where  0 1.66265;WT A   and

     WT A WT A WT AU L     where  0 1.66265WT A 
Now using the bounds we calculate the membership functions for objective as follows

 
    

 
   

 

1 2 1 2, ,

1 2

1 2
1 2

1 2

, ,

1 , , 12.57667

14.23932 , ,
12.57667 , , 14.23932

1.66265
0 , , 14.23932

B BWT A A y

B

B
B

B

T WT A A y

if WT A A y
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 
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Similarly the membership functions for tensile stress are
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 0 , 20
T T

where    
and the membership functions for compressive stress constraint are
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 0 , 10
C C

where    
Now, using above mentioned  truth, indeterminacy and falsity membership function in (7) NLP (8) can be solved
by NSO technique for different values of , ,

T CWT     and , ,
T CWT     . The optimum solution of  SOSOP(7)

is given in table 2 and the solution is compared with fuzzy problem.

Table 2: Comparison of Optimal solution of SOSOP (7) based on different method

Methods
 
 

1

2

A

m
 
 

2

2

A

m
  
 

1 2,WT A A
KN

 
 

By
m

Fuzzy single-objective non-linear programming .5883491 .7183381 14.23932 1.013955
(FSONLP)

Neutosophicoptimization (NSO)
 0.33253, 4, 2

T CWT      .5954331 .7178116 13.07546 .818181
 .498795, 6, 3

T CWT     
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Here we get best solutions for the different tolerance WT(A), T and C  for indeterminacy  membership
function of objective functions for this structural optimization problem. From table 2, it is shown that NSO
technique gives better Pareto optimal result in the perspective of Structural Optimization.

7. Conclusions
The main objective of this work is to illustrate how neutrosophic optimization technique using linear

membership function can be utilized to solve a single objective-nonlinear structural problem. The concept of
neutrosophic optimization technique allows one to define a degree of truth membership, which is not a
complement of degree of falsity; rather, they are independent with degree of indeterminacy. The numerical
illustration shows the superiority of neutrosophic optimization over fuzzy optimization. The results of this
study may lead to the development of effective neutrosophic technique for solving other models of single
objective  nonlinear programming problem in other engineering field.

Conflict of interests: The authors declare that there is no conflict of interests.
Acknowledgement

The research work of MridulaSarkar is financed by Rajiv Gandhi National Fellowship (F1-17.1/2013-14-
SC-wes-42549/(SA-III/Website)),Govt of India.

References
1. Zadeh, L.A., Fuzzy set. Information and Control, 8(3), 338-353 (1965).
2. Bellman, R. E., & Zadeh, L. A.,  Decision-making in a fuzzy environment. Management science, 17(4), B-

141 (1970).
3. Atanassov, K. T., Intuitionistic fuzzy sets. Fuzzy Sets and Systems,20(1), 87-96  (1986).
4. Smarandache, F., Neutrosophy, neutrosophic probability, set and logic, Amer. Res. Press, Rehoboth,

USA,105  (1998).
5. Wang, G.Y. & Wang, W.Q., Fuzzy optimum design of structure. Engineering Optimization, 8, 291-300 (1985).
6. Rao, S. S., Description and optimum design of fuzzy mechanical systems. Journal of Mechanisms,

Transmissions, and Automation in Design, 109(1), 126-132  (1987).
7. Yeh, Y.C. & Hsu, D.S., Structural optimization with fuzzy parameters. Computer and Structure,37(6), 917–

924  (1990).
8. Changwen, X., Fuzzy optimization of structures by the two-phase method. Computers & Structures, 31(4),

575-580  (1989).
9. Shih, C. J., & Lee, H. W.,  Level-cut approaches of first and second kind for unique solution design in fuzzy

engineering optimization problems.Tamkang Journal of Science and Engineering 7(3),189-198 (2004).
10. Shih, C. J., Chi, C. C., & Hsiao, J. H., Alternative á-level-cuts methods for optimum structural design with

fuzzy resources. Computers & structures, 81(28), 2579-2587 (2003).
11. Dey, S., & Roy, T.K., A Fuzzy programming Technique for Solving Multi-objective Structural Problem. International

Journal of Engineering and Manufacturing, 4(5), 24  (2014).
12. Dey, S., & Roy, T. K., Multi-objective structural design problem optimization using parameterized t-norm

based fuzzy optimization programming Technique. Journal of Intelligent and Fuzzy Systems, 30(2), 971-
982  (2016).

13. Dey, S., & Roy, T., Optimum  shape design of  structural  model with imprecise  coefficient  by parametric
geometric programming. Decision Science Letters, 4(3), 407-418  (2015).

14. Jana, B., & Roy, T. K., Multi-objective intuitionistic fuzzy linear programming and its application in
transportation model. Notes on Intuitionistic Fuzzy Sets, 13(1), 34-51  (2007).

15. Dey, S., & Roy, T. K., Optimized solution of two bar truss design using intuitionistic fuzzy optimization
technique. International Journal of Information Engineering and Electronic Business, 6(4), 45(2014).

16. Dey, S., & Roy, T. K., Multi-objective structural optimization using fuzzy and intuitionistic fuzzy optimization
technique. InternationalJournal of Intelligent systems and applications, 7(5), 57 (2015)..

JUSPS Vol. 28(6)A, (2016). 321


