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Abstract

In this paper, we have considered unsteady hydro dynamic poiseuille flow of an incompressible electrically
conducting couple stress fluid through a porous medium between parallel plates, taking into account pulsation of the
pressure gradient effect and periodic body acceleration with phase difference.  The solution of the problem is obtained with
the help of perturbation technique. Systematic expression is given for the velocity field, and the effects of the various
governing parameters entering into the problem are discussed with the help of graphs.  The shear stresses on the boundaries
and the discharge between the plates are also obtained analytically and their behaviour computationally discussed with
different variations in the governing parameters in detail.

Key words: Unsteady flows, rotating channels, couple stress fluids, periodic body acceleration and Brinkman’s
model.

1. Introduction

Many attempts have been made by several authors
to describe blood as a simple model but failed to reach their
attempts. In further investigation many authors have used
one of the simplification is that they have assumed blood to
be a suspension of spherical rigid particles (red cells), this
suspension of spherical rigid particles will give rise to couple
stresses in a fluid. Stokes22 introduced the theory of couple
stress fluid, which is a special case of micro-polar fluid.
Valanis and sun25 have proposed a mathematical model for
blood flow by assuming blood as a couple stress fluid. It
seems that their work contained some serious errors that

have been corrected by Chaturani2. Further, Chaturani3 has
proposed a method to determine couple stresses parameters
with the help of relative viscosity and velocity profiles.
Chaturani and Upadhya5 Investigated the pulsatile flow of
couple stress fluid by using perturbation method. They
have obtained the expressions for flow velocity, wall shear,
flow rate and relative viscosity. They have suggested two
methods for the determination of the value of pulsatile
Reynolds’s number. A critical study of poiseuille flow of
couple stress fluid with application to blood flow has been
carried out by Chaturani and Rathod4. The important
conclusion of their analysis is a method (geometrical) that
has been developed for studied a theoretical model for



P. Sulochana 175

pulsatile flow of blood with varying cross sectional tube
and its applications to cardiovascular diseases. It is observed
that an increase in finding the precise value of non
dimensional couple stress parameter. Rathod16 studied a
theoretical model for pulsatile flow of blood with carrying
cross sectional tube and its applications to cardiovascular
disease. It is observed that an increase in   leads to an increase
as the concentration decreases (i.e., as increases). A simple
mathematical model depicting blood flow through permeable
tube by assuming blood as couple stress fluid has been
studied by Pal et al.12. Sagayamary and Devanathan17 have
studied two dimensional flow of couple stress fluid through
a rigid tube of varying cross section for low Reynolds
numbers. Gopalan7 discussed pulsatile blood flow in the
lung alveolar sheets by idealized each of them as a channel
covered by porous media.

To acquire a more complete understanding of the
flow in small vessels, it is important, however, to consider
flow not only in straight tubes, but also in other geometries.
In cardiovascular system most of the blood vessels are not
having uniform cross section8. Padmanabha11 analyzed
pulsatile flow of viscous fluid through a curved elastic tube.
Batra and Jena1 have studied the steady, laminar flow of a
Casson fluid in a curved tube of circular cross section.
Smith21 has studied on flow through bends and branching.
Schneck18 has obtained an approximate analytical solution
for a pulsatile flow through a diverging channel. Using
perturbation method, Rao and Devanathan14 have analyzed
pulsatile flow of  blood through varying cross sectional
tube. Ramachandra Rao15 has investigated oscillatory flow
through an elastic tube with varying cross section. The
pulsatile blood flow in an eccentric catheterized artery has
been studied numerically by Prabir and Ranjan13 by
considering blood as Newtonian fluid. The axial pressure
gradient and velocity distribution in the eccentric catheterized
artery has been obtained as solutions of the problem. The
flow of non Newtonian fluids in converging or diverging axi
symmetric tubes has been investigated by Sutterby23, 24. A
series solution for both converging and diverging axi-
symmetric flow of an incompressible Newtonian fluid was
developed by Forester and young6.  Schneck and Ostrich19

studied the pulsatile flow of blood in a channel of small
expontical divergence. Schneck and Walburn20 have
investigated the pulsatile flow of blood with low Reynolds
number assuming blood as a Newtonian fluid, through a
channel of diverging cross section. They have observed a
phase-lag between flow rate and pressure gradient. The
steady flow of an incompressible micro polar fluid in a
diverging channel has been studied by Kamel9. Misra and

Ghosh10 used a micro continuum approach to determine
the velocity and pressure distributions in an exponentially
diverging channel. Rathod16 studied the pulsatile flow of
couple stress fluid through slowly diverging tubes and its
applications to cardiovascular diseases. It is observed that
the point of inflection and back flow is observed in the axial
velocity profiles for higher values of phase angles between
flow rate and pressure gradient decreases as the concentration
increases, i.e.   decreases. The above-discussed models
are related to steady and pulsatile flow of Newtonian and
non-Newtonian fluids through curved, converging/diverging
and exponentially diverging  tubes. In this paper, we discuss
an analytical study of unsteady hydro dynamic poiseuille
flow of an incompressible electrically conducting  couple
stress  fluid through a porous medium between parallel
plates, taking into account pulsation of the pressure gradient
effect and under the influence of periodic body acceleration
with phase difference  .

2. Formulation and Solution of the problem:
We consider the unsteady hydro flow of a couple

stress fluid through a porous medium induced by the pulsation
of the pressure gradient.  The plates are assumed to be electrically
insulated.  The flow takes place under the influence of
periodic body acceleration with phase difference  .

We choose Cartesian co-ordinate system O(x, y,

z) such that the boundary walls 0y and hy  . In
such a way that the xz-plane is taken on the lower plate and
this y-axis is normal to the plates.  The induced magnetic
field is assumed to be negligible and also the flow in the porous
medium is assumed to be fully developed. The periodic
body acceleration is assumed to be  cos0gG    where,

0g  is the amplitude of the body acceleration and     is its
phase difference. Under these assumptions the unsteady
equations governing the couple stress fluid flow in the
absence of body force f and body moment I are
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Where, u (y, t) is the velocity, the term 4
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  in the above

equation gives the effect of couple stresses. All the physical
quantities in the above equation have their usual meaning.
The boundary conditions are

00 yatu   (2.2)

0)1( hyatu   (23)

Since the couple stresses vanish at both the plates which in
turn, implies that
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Introducing non-dimensional variables are
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Using the non-dimensional variables (dropping asterisks),
The governing equation (2.1) reduces to

cos222122 













  Ga

x
pa uaD

y
ua

y
u

t
ua 2

2

4

4

  (2.6)

Where
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2 ha   is the couple stress parameter
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1   is the inverse Darcy parameter

2
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hgG   is the body acceleration parameter

Corresponding the non-dimensional boundary conditions
are given by
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For the pulsation pressure gradient
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The equation (2.6) reduces to the form
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The equation (2.12) can be solved by using the following
perturbation technique

ti
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Substituting the equation (2.13) in (2.12) and equating like
terms on both sides
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Subjected to the boundary conditions
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The solutions of the equations (2.14) and (2.15) subjected
to the boundary conditions (2.16) to (2.23) give the velocity
distribution of the fluid under consideration.            
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Where, the constants 821 .,........., CCC   are given in appendix.
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The shear stresses on the upper and lower plates
are given in dimension less form as
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depth is given by Q
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3. Results and Discussion

The motivation of this study is to investigate the
effect of pulsation of pressure gradient as well as the
influence of periodic body acceleration on the flow.  The
velocity field in the porous medium has been computa-
tionally evaluated for different variations in the governing
parameters a, the couple stress parameters, D-1 the inverse
Darcy Parameter and G the body acceleration parameter.
From the linear momentum equations, we may note that if
the magnitude of the body acceleration dominates over the
axial pressure gradient then the velocity u is positive and
the flow takes place from left to right. In case of the magnitude
of pressure gradient is more then the body acceleration,
then u is negative and the flow takes place from right to left.
In general the magnitude of velocity µ increases from zero
the state of rest on the lower boundary (y=0) to a maximum
in the upper half region and later gradually reduces to rest
on the upper boundary (y=1). The flow governing the non-
dimensional parameters namely viz. a couple stress
parameter, D-1 the inverse Darcy parameter, G body
acceleration parameter, Po the amplitude of pulsation
pressure gradient. The fig (1-2) represent the velocity
profiles for the pulsation pressure gradient dominates the
body acceleration parameter and which corresponds to

2
    with variations in the governing parameters while

fixing the other parameters and the figures (3-4) represents
the reverse case with flow taking place from right to left.
Fig. (1 and 3) illustrates the magnitude of the velocity u

enhances with increasing the couple stress parameters “a”
and fixing the other parameters.  From figures (2 and 4), it is
evident that the magnitude of the velocity u decreases with
increasing the inverse Darcy parameter D-1. Hence lesser
the permeability of the porous medium greater the
retardation experienced by the flow in the entire flow field.
The velocity profile (5) exhibits how the velocity u
influenced with the body acceleration parameter G. We may
observe that the negative pressure gradient in the momentum
equation balances the body acceleration term and hence in
the absence of any other extraneous forces the fluid is at
rest, since the channel walls are at rest. However, when the
body acceleration dominates the pulsation pressure gradient,
the magnitude of the velocity component u enhances with
increase in G in the entire flow field.  Likewise it is interesting
to note that when the pulsation pressure gradient dominates
the body acceleration, an increase in G the magnitude of the
velocity u reduces in the entire flow field.  The Fig. (6)
illustrates the magnitude of the velocity u enhances with
increase in the amplitude of pulsation of pressure gradient.
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Fig. 2. The velocity profile for u with D-1

a=0.5, G=1, Po=Ps =10.
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Fig. 4. The velocity profile for u with D-1

Ga = 0.5, G = 1, Po = Ps =10
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a I II III IV V VI VII
0.5 0.052453 0.045215 0.038485 0.082458 0.121526 0.021152 0.010534
1 0.032145 0.030052 0.021566 0.056858 0.095652 0.015315 0.006536
4 0.015154 0.005266 0.002562 0.032565 0.068234 0.008245 0.004266

I II III IV V VI VII
D-1 2000 3000 4000 2000 2000 2000 2000
G 1 1 1 2 3 1 1
Po 10 10 10 10 10 25 50

Table I. The shear stresses on the upper plate. 

Ps =10, t =1,  
 

2


  ,  060
a I II III IV V VI VII
0.5 -0.0082 -0.0075 -0.0068 -0.0153 -0.0453 -0.0005 -0.0004
1 -0.0065 -0.0053 -0.0043 -0.0105 -0.0163 -0.0002 -0.0001
4 -0.0032 -0.0015 -0.0005 -0.0052 -0.0831 -0.0001 -0.0001

I II III IV V VI VII
D-1 2000 3000 4000 2000 2000 2000 2000
G 1 1 1 2 3 1 1
Po 10 10 10 10 10 25 50

Table II: The shear stresses on the lower plate. 

Ps = 10, t = 1, 
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a I II III IV V VI VII
0.5 0.065245 0.034545 0.030834 0.052653 0.048343 0.153456 0.183453
1 0.095345 0.056536 0.048745 0.083759 0.065265 0.256534 0.534568
4 0.126546 0.084534 0.082463 0.096921 0.085665 0.356678 0.811579

I II III IV V VI VII
D-1 2000 3000 4000 2000 2000 2000 2000
G 1 1 1 2 3 1 1
Po 10 10 10 10 10 25 50

Table III. The Discharge Q

Ps =10, t =1, 
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The shear stresses have been evaluated on the
boundaries and tabulated in the tables I and II.  The magnitude
of the stresses on either plate enhances with increase in
body acceleration parameter G, and it reduces with increase
in the amplitude of pulsation pressure gradient and the
inverse Darcy parameter D-1 fixing the other parameters.
Thus lesser the permeability lower the stresses on the
boundaries, also the magnitude of the stresses on the lower
boundary is far lesser than the corresponding magnitudes
on the upper boundary.  We observe that the stresses reduces
on the upper boundary while enhances on the lower
boundary with increase in the couple stress parameter ‘a’.
The discharge Q between the plates enhances with increase
in the couple stress parameter ‘a’ and amplitude of pulsation
pressure gradient Po, and reducer with increase inverse Darcy
parameter D-1 and body acceleration parameter G (table.
III).

4. Conclusions

we have considered unsteady hydro dynamic
poiseuille flow of an incompressible electrically conducting
couple stress fluid through a porous medium between
parallel plates, taking into account pulsation of  the pressure
gradient effect and periodic body acceleration

1. The magnitude of the velocity enhances with increase in
the couple stress parameter ‘a’ and the amplitude of pulsation
pressure gradient.
2.  The magnitude of the velocity reduces with increase in
the inverse Darcy parameter D-1.
3. When the body acceleration dominates the pulsation
pressure gradient, the magnitude of the velocity u enhances
with increase in the body acceleration parameter G, while
pulsation pressure gradient dominates body acceleration
the magnitude of the velocity reduces with increase in G.
4. The magnitude of the stresses on either plate enhances
with increase in body acceleration parameter  G,  and it
reduces with increase in the amplitude pulsation pressure

gradient and the inverse Darcy parameter.  The stress reduces
on the upper boundary and enhances on the lower boundary
with increase in the couple stress parameter ‘a’.
5. The magnitude of the stresses on the lower boundary
lesser than the corresponding values of the upper boundary.
6. The discharge Q between the plates enhances with increase
in the couple stress parameter a and amplitude of pulsation
pressure gradient Po, and reduces with increase in the inverse
Darcy parameter D-1 and the body acceleration parameter
G.
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