
Results on Accurate Edge Domination Number in Graphs

 VENKATESH S.H 1 , V.R. KULLI 2 , VENKANAGOUDA M. GOUDAR 3  and VENKATESHA 4

1 Research Scholar, Sri Gauthama Research Centre, (Affiliated to Kuvempu University),
 Sri Siddhartha Institute of  Technology, Tumkur, Karnataka, India

2 Department of Mathematics, Gulbarga University, Gulbarga, India

3 Department of Mathematics, Sri Gauthama Research Centre, (Affiliated to Kuvempu University),
Sri Siddhartha Institute of Technology, Tumkur, karnataka, India

4 Department of Mathematics, Kuvempu University Shankarghatta, Shimoga, Karnataka, India.

Email address of Corresponding Author: sh1.venkatesh@gmail.com
http://dx.doi.org/10.22147/jusps-A/290104

Acceptance Date 15th Dec.,  2016,          Online Publication Date 2nd Jan., 2017

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES
An International Open Free Access Peer Reviewed Research Journal of Mathematics

website:- www.ultrascientist.org

JUSPS-A  Vol. 29(1),  21-29  (2017).  Periodicity-Monthly

Section A

Estd. 1989

(Print) (Online)

Abstract

A edge dominating set F  of a graph ),(= EVG  is an accurate edge dominating set, if >< FE   has no

edge dominating set of cardinality || F . The accurate edge domination number )(Gae  is the minimum cardinality of an

accurate edge dominating set. We study the graph theoretic properties of )(Gae  and its exact values for  some standard

graphs. The relation between )(Gae  with other parameters are also investigated.
Key words: Accurate edge dominating set,  Accurate edge Dominating set.
Mathematics Subject Classification: 05C,05C05, 05C70.

1  Introduction

  In this paper we follow the notations of 3, Let G  be a finite, simple, non-trivial, undirected and connected

),( qp  graph with vertex set )(GV  and edge set )(GE .  The degree of a vertex v  in a graph G  is the number of edges

of G  incident with v  and is denoted by )(vdeg  and ])[)(( vNvN  denotes the open (closed) neighborhoods of a

vertex v .  A vertex of degree one is called an pendent vertex.  A vertex adjacent to pendent vertex is called the support

vertex. As usual pppp KWCP ,,,  and pK1,  are respectively the path, cycle, wheel, complete graph and star..
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The notation ))()(( 10 GG   is the minimum number of vertices (edges) in a vertex (edge) cover of G .  Also
))()(( 10 GG   is the maximum number of vertices (edges) in a maximum independent set of vertex (edge) of G . The

greatest distance between any two vertices of a connected graph G  is called the diameter of G  and is denoted by

)(Gdiam . The maximum (minimum) degree of a vertex v  is denoted by ))()(( GG  . For any real number x , x
denotes the smallest integer not less than x  and x  denotes the greatest integer not greater than x . A cut vertex of a graph
is one whose removal increases the number of components. In general >< X  to denote the subgraph induced by the set
of vertices X .

Spider is a tree with one vertex of degree at least three and all others with degree at most one. Caterpillar tree is
a tree in which all the vertices are within distance one of a central path.

A set )(GEF   is said to be an edge dominating set if every edge in FGE )(  is adjacent to some edges in
F.  The Edge domination number of G is the cardinality of smallest edge dominating set of G and is denoted by )(G  .
This concept was introduced by Mitchell and Hedetniemi6.

A dominating set D  of a graph G  is an accurate dominating set, if DV   has no dominating set of cardinality

|| D . The accurate domination )(Ga  is the minimum cardinality of an accurate dominating set. This concept was

introduced by Kulli and Kattimani11.

Throughout the paper we consider a graph with vertices 4p .
2  Preliminary Notes:

We need the following results to prove further results.

Theorem 2.112  If G is a ),( qp  graph without isolated vertex then )(
1)(

' G
G
q 


.

In the next section we discuss results on Accurate edge domination number of a graph.

3   Accurate edge domination number of a graph:
 In this we initiate the study of accurate edge domination is defined as below.

A edge dominating set F  of a graph ),(= EVG  is an accurate edge dominating set, if >< FE   has no

edge dominating set of cardinality || F . The accurate edge domination number )(Gae  is the minimum cardinality of an

accurate edge dominating set10.

In this paper we study the graph theoretical properties of )(Gae  and many bounds were obtained in terms of

elements of G . For example, we consider the graph G  in the figure 3.1. The Accurate edge dominating set of G  is

{3,5,7}=A . Therefore 3|==|)( AGae  .

Figure 3.1
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4  Results on accurate edge domination number Graph

Theorem 4.1 For any connected ),( qp  graph G  and if 1n  is an integer then,





















3
3

3
1

3
4

=][
p

p

p

Ppae

Proof. Let )(= GPG p  be a connected graph with 4p . Let },...,{=))(( 21 qp eeeGPE  be the edge set of

)(GPp  and let ))((}/1,...,{= 21 GPEqieeeF pi   be the minimum edge dominating set of )(GPp . Let

},...,{ 21 pvvv  be the vertex set of )(GPp . Let K  be the minimum edge dominating set of induced subgraph

>))((< FGPE p  . If |||| KF   then FA =  itself forms accurate edge dominating set of )(GPp . Otherwise,

consider ))(((1 FGPEF p  , Let 1= FFA  . If >)))(((< AGPE p   has no edge dominating set of

cardinality || A  then A  forms the accurate edge dominating set with minimum cardinality. We have the following cases.

Case1. Suppose 23= np .

Let 2321 ,..., nvvv  be the path )(GPp  and },...,{= 121 neeeF  forms minimum edge dominating set of

)(GPp . If K  be the minimum edge dominating set of the induced subgraph >))((< FGPE p   then ||=|| KF ,

which is a contradiction. So we consider )( FEel   such that }{= leFA   forms the minimum accurate edge

dominating set of )(GPp .

Therefore 2|=| nA .


3

4=2|=| 


pnA .

Hence 
3

4=)( pGae .

Case 2. Suppose p=3n+1.

Let  },...,{= 21 neeeF  be the edge dominating set of  )(GPp  and  },...,{= 121 neeeK  be the minimum

edge dominating set of induced subgraph  >))((< FGPE p  . Clearly,  |||| KF  . So  FA =  forms the minimum

accurate edge dominating set of  )(GPp . Thus,  nA |=|  but 
 

3
1= pn .

Hence 
 

3
1=)( pGae .

Case 3. Suppose  33= np .

if p=3n+2

if p=3n+1

if p=3n+3



Let  },...,{= 121 neeeF  forms the edge dominating set of  )(GPp . If K be the minimum edge dominating set

of the induced subgraph  FGPE p ))((  then  ||=|| KF , which is a contradiction. So we consider  )(}{ FEel 

such that  }{= leFA   forms the minimum accurate edge dominating set of  )(GPp . Therefore  2|=| nA .


3

3=2|=| 


pnA . 

      Hence  
 

3
3=)( pGae .

Theorem 4.2 For any connected (p,q) graph G,  ][][' GG ae  .

Proof. Let G be a connected graph. Let  )(}/1{= GEqieF i   be the minimum edge dominating set of  G

such that  )(|=| ' GF  . Let K be minimum edge dominating set of induced subgraph  >< FE  . If  |||| KF   then

A=F itself forms a minimum accurate edge dominating set of G. Otherwise, consider  ))(((1 FGPEF p  , Let

 1= FFA  .  If   >)))(((< AGPE p   has no edge dominating set of cardinality |A| then A forms the accurate edge

dominating set with minimum cardinality. Clearly, every accurate edge dominating set is a edge dominating set. Hence

 |||| AF  , Which gives  ][][' GG ae  .
Theorem 4.3 A caterpillar tree T with each cut vertex of degree greater than or equal to three then

 







 

2
s

1s

=][Tae

Where s is the number of cut vertices in T.

Proof. Let T be a caterpillar tree of vertex set  },...,{= 21 pvvvV  and let  )(}/1,...,{= 21 TVprvvvC r 

be the cut vertex set of T with  3)( ivdeg  for all  ri 1 such that  sC |=| . Let  },...,{= 21 qeeeE  be the edge

set of T and let  )(}/1,...,{= 21 TEqteeeF t   be the minimum edge dominating set of T. If  >< FE   has

no edge dominating set of cardinality |F| then A = F it self forms minimum accurate edge dominating set T. Otherwise,

consider  ))((1 FTEF   such that  1= FFA   forms the minimum accurate edge dominating set of T if

 >)(< 1FFE   has no edge dominating set of cardinality  1FF   and  )(|=| TA ae . We have the following

cases
Case 1. Suppose |C| is odd.

Let  Aqjeee j  }/1,..,{ 21 . It follows that  1||=|| CA . 1|=|  sA . Hence  1= sae .
Case 2. Suppose |C| is even.

Let  Aqjeee j  }/1,..,{ 21 . It follows that  ||=|| CA .  sA |=| . Hence  sGae =)( .

Theorem 4.4 Let G be a star if and only if  1)(=)(  qpGae .
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if s is odd

if s is even



Proof. Suppose G be a star. Let  )(}{= 1 GEeF   be the minimum edge dominating set of G and also

 }{= 2eK  be the edge dominating set of  >)(< FGE  . But  ||=|| KF . So consider an edge  )(3 FEe   such that

 }{= 3eFA   forms the minimum accurate edge dominating set in G and induced subgraph  >}){()(< 3eFGE   has no

edge dominating set of cardinality  |}){(| 3eF  . We observe that  )(=2|=| GA ae .

Then  21|=|1  qpAqp
 1|=|1  qpAqp
since G is a star so 1 = p q, above equality becomes
 )(|=|1 qpqpAqp 
 qGqp ae 2=)(1 

Hence  )(1=)( qpGae  .

Conversely, Suppose  )(1=)( qpGae  .
From the above equality if  1=qp  , it implies that  2=)(Gae .
Hence G is a star.

Theorem 4.5 For any connected (p, q) graph with  3)(  G  then  2)( 1   qGae  and equality holds for a
star.

Proof. Let G be connected graph with  3)(  G . Let  }...,{= 21 feeeM   be the set of all end edges. Suppose

 ))((}...,{= 21 MGEeeeB k   be the set of edges such that  2),( ji eed  for some  kjfi  ,11  then  RM 

where  BR  be the minimum set of edges which covers all the vertices in G such that  )(|=| 1 GRM  . Let

 }/1...,{= 21 qjeeeF j   be the minimum number of edges covers all the edges of G. Suppose induced subgraph

 >)(< FGE   has no edge dominating set of cardinality |F| then A = F itself  is a  )(Gae . Suppose  >)(< FGE   has edge

dominating set of cardinality |F| then consider  ))((1 FGEF   such that  
1= FFA   forms minimum accurate edge

dominating set of  G if induced subgraph  >)()(< 1FFGE   has no edge dominating set of cardinality  || 1FF  .

Since  4P  we have a connected graph G with at least 3 edges. It follows that  )()( GERMA  .

 2|||)(|||  RMGEA . Hence  2)( 1   qGae .

Suppose G is a Star. Clearly,  )(|=|=|)(| 1 GRMGE  . From Theorem 4.4  2=)(Gae . Therefore it follows that

 2|||=|)(  RMEGae . It implies  2=)( 1  qGae . Hence  2=)( 1  qGae .

Corollary 4.6 For any connected (p, q) graph then  2)()( '  GqGae  .

Theorem 4.7 For any connected  )4,( qp   graph then 
 

2
1)(

)()(
1)(










G
GqG

G
q

ae .

Proof. It is known that from theorem7,  )(
1)(

' G
G
q




 and since  ][][' GG ae  . Clearly, we see that the

lower bound 
 

)(
1)(

G
G
q

ae


  holds. By the Corollary 4.6,

 2)()( '  GqGae 
 

2
1)(

)( 



G
qqGae
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2

1)(
1))(()( 





G
qGqGae

 
2

1)(
)()( 





G
GqGae

Hence  
 

2
1)(

)()( 





G
GqGae

This achieves the upper bound.

Theorem 4.8 For any wheel  4p , 
 





2

1=)]([( pGWpae .

Proof. Let  )(GWp  be a wheel with  1p  vertices on the cycle and a single vertex at the center. Let

 },...,,{=))(( 121 pp vvvcGWV   where c is the center vertex and  },...,{ 121 pvvv  vertices on the cycle. Let

 },...,,...,{=))(( 121 qiip eeeeeGWE   be the edge set of  )(GWp  where  },...,{ 21 ieee  be the  1p  edges incident to the

single vertex c  as well as vertices lies on cycle and  },...,{ 21 qii eee   be the edges incident to the vertices lies on the cycle.

Let  },...,{}{= 211 qii eeeeF    be the minimum edge set covers all the edges of the wheel and let K be the minimum

edge dominating of set of  >))((< FGWE p  . If  |||| KF   then A=F  is the accurate edge dominating set of  )(GWp .

Otherwise, consider  FF 1   such that  1= FFA   forms the minimum accurate edge dominating set of   )(GWp  if

 >)(< 1FFE   has no edge dominating set cardinality  || 1FF  . clearly, , 
 

2
1|=| pA .    

 

2
1=)]([( pGWpae .

Hence 
 





2

1=)]([( pGWpae .

Theorem 4.9 For any connected (p, q) graph G then  )()()( ' GpGdiamGae   .

Proof. Let  )(}/1,...,{= 21 GEqteeeM t   be the minimum set of edges which constitute the longest
path between any two distinct vertices  )(, 21 GVvv    such that  )(=),( 21 Gdiamvvd . Let  }/1{= qieF i 
be the minimum edge dominating set of G such that  )(|=| ' GF   and let  }/1{= qjeA j   be the minimum accurate edge

dominating set of G such that  )(|=| GA ae . By the definition of  )(Gae ,  >)(< AGE   has no edge dominating set of
cardinality |A|. We discuss in the following cases.
Case 1. Suppose edge dominating set F itself forms minimum accurate dominating set of G, then  >)(< FGE   has no
edge dominating set of cardinality |F|. Thus |A|=|F| it follows that  pvvd ),( 21 . It implies  ||),(|| 21 FpvvdA  .

Hence  )()()( ' GpGdiamGae   .

Case 2. Suppose cardinality of edge dominating set F is same as cardinality of edge dominating set of  >)(< FGE  .

Then consider  1FF   be the minimum edge dominating set of G and its cardinality is different from the cardinality of edge

dominating set of  >)()(< 1FFGE  . Then  1= FFA   is accurate edge dominating set of G. Clearly, it follows that

 ||),(|| 211 FpvvdFF  . It implies  ||),(|| 21 FpvvdA  . Hence  )()()( ' GpGdiamGae   .
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Theorem 4.10 For any connected (p, q)  graph G, 
 

3)(
2

)(
0  GGae 

 .

Proof. Let   )(}/1,....{= 21 GVplvvvR l   be the maximum set of vertices such that  2),( vud

and  xvNuN =)()(   for all  Svu ,  and  ))(( SGVx  . Clearly, ,  )(|=| 0 GS  . Let  }/1,...,{= 21 qjeeeA j 

be the minimum accurate edge dominating set of G and  >)(< AGE    has no edge dominating set of cardinality |A|.

Clearly, 
 

3||
2

||
 RA

. Hence 
 

3)(
2

)(
0  GGae 


.

Theorem 4.11 Let G be a connected graph with  2)( G  and  2=)(Gdiam  then  1)(2)(  GGae  .

Proof. Let G be a connected graph with  4p . Let  )(},{= GEheK   be the edges in which constitute the

diametral path in G such that  2=)(Gdiam  and let  )(1 GVv   such that  )(=)( 1 Gvdeg  . We have the following
cases.

Case 1. Suppose  2=)(G . We observe that  )(},{= 21 GEeeF   be the  )(' G  such that  2|=| F . Let

 )(}}/3{},{{= 21 GEqleeeA l    be the accurate edge dominating set of G. By the theorem 4.2, we have

 )()(' GG ae  . Therefore  3)(2  Gae . Thus  1)(2|| 1  vdegA . It implies  1)(2||  GA  . Hence

 1)(2)(  GGae  .

Case 2. Suppose  2>)(G . We observe that  )(}/1,...,{= 21 GEqteeeF t   be the  )(' G  such that

 2|| F . A set  }/1,...,{= 21 qleeeA l    is the accurate edge dominating set of G if  >)(< AGE   has no
dominating set of cardinality |A|. Thus it follows that
 1)(31)(||  GGA 

 1)(2||  GA 

Hence  1)(2)(  GGae  .

Theorem 4.12 For any complete graph  pKG = , 
 


2

][ pK pae .

Proof. Let  },...,{=)( 21 pvvvGV  be the vertex set of G. The distance between any two vertices is exactly one

that is  1=)(Gdim  and  )(=1=)( GpG   or  1=)(  pvi  for all  pi 1  then G is complete graph. Let

 ))((}/1,...,{= 21 GEqleeeF l   be the minimum edge dominating set of G. Let F' be the minimum edge

dominating set of induced subgraph  >)(< FGE  .  If  |||| 'FF   then A=F itself forms accurate edge dominating set

of G. Otherwise, consider  ))((1 FGEF  , Let  1= FFA  . If  >))((< AGE   has no edge dominating set
of cardinality |A| then A forms the accurate edge dominating set with minimum cardinality.

Then  1)()())((1  iae vGGdiam 


 

)(1
1)()(
Gdiam

vG i
ae 



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
 

2
11=

)(1
1)()( 





p

Gdiam
vG i

ae

Hence  
 


2

)]([ pGK pae .

Theorem 4.13 For any cycle Cp then 
 

1
2

=)( 
pGae .

Proof. Let Cp be a cycle with  4p  and it is 2-regular graph that is  )(=2=)( pi Cvdeg   for all i. Let

 )(},1,1/{= pji CEpjpijivvF   be the edge dominating set of Cp. Let K be the minimum edge dominating

set of induced subgraph  >)(< FGE  . If  |||| KF   then A=F  itself forms accurate edge dominating set of G.

Otherwise, consider  ))((1 FGEF  , Let  1= FFA  . If  >))((< AGE   has no edge dominating set of

cardinality |A| then A forms the accurate edge dominating set with minimum cardinality.

Since  pCG =  is a 2-regular graph then degree of each vertex is two and the number of vertices is equal to

number of edges. We observe that   },...,{=
1

2
21


peeeA  forms the minimum accurate edge dominating set of Cp  such that

 )(|=| GA ae . From Theorem7, 
 

)(
1)(

' G
G
q 


  it implies that 
 

)(
12

' Gp 


.

But  

212
pp




. Therefore 
 

)(
2

' Gp  .

By the theorem 4.2, we have  )()(' GG ae   so above inequality becomes
 

1
2

=)()(' 
pGG ae

Hence 
 

1
2

=)( 
pC pae .

Theorem 4.14 Let G be a 3-regular graph then 
 


2

)( qGae .

Proof. Since  3)3=,2=(= nqnpG  for  1n  is 3-regular graph with  3=)( ivdeg  for all i and each

edge adjacent to exactly four edges in G that is  4=)( jedeg  for all j. Let  },...,{= 221 nvvvV  be the vertex of G and

 },...,{= 3)321 neeeE  be the edge set of G. Let  }/1{= qteA t   be the accurate edge dominating set of G such that

 )(|=| GA ae . It follows that  ||2 Aq  . It implies that 
 


2

|| qA . Hence 
 


2

)( qGae .

Theorem 4.15 For any spider tree T and diam (T)  10,  )()()( TTdiamTae  .

Proof. Let T be a spider. Let  )(1 TVv   be the head vertex such that   3)( 1  v  and  ))((},...,{ 132 vTVvvv p 

such that  2)(  iv  for all  pi 2 . Let  }/1,...,{= 21 qteeeF t   be the minimum edge dominating set of T and

there exits at least one edge  Fx  incident to  1v . Also  }/1,...,{= 21 qdeeeR d   be the set of all edges constitute

the longest path in T such that  10)(|=| TdiamR . Suppose  >< FE   has no edge dominating set of cardinality |F|

then A=F forms  )(Tae . Otherwise,  },...,{= 21 seeeFA   forms minimum accurate edge dominating set of T. Clearly,,
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 )()(|| 1 TdiamvdegA  . Hence  )()()( TTdiamTae  .

Theorem 4.16 Let G be a connected  )4,( qp   graph such that G and  G  are connected graph then,

1)  qGG aeae 2)()(   .

2) 
 


3

)().( pGG aeae  .

5  Conclusion

In this paper we discussed the accurate edge domination number of a connected graph. Also we obtained the
relationship between edge domination number, edge covering number, maximum and minimum degree, maximum independent
number and diameter of accurate edge domination number of a graph.
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