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Abstract

A edge dominating set | of a graph G= (V, E) is an accurate edge dominating set, if < E — F > has no
edge dominating set of cardinality | F | . The accurate edge domination number Y ae (G) is the minimum cardinality of an
accurate edge dominating set. We study the graph theoretic properties of .. (G) and its exact values for some standard

graphs. The relation between ¥ .. (G) with other parameters are also investigated.
Key words: Accurate edge dominating set, Accurate edge Dominating set.
Mathematics Subject Classification: 05C,05C05, 05C70.

1 Introduction

In this paper we follow the notations of 3 Let G be a finite, simple, non-trivial, undirected and connected
(p,q) graph with vertex set V (G) andedge set E(G). Thedegree of avertex V inagraph G isthe number of edges
of G incident with Vv and is denoted by deg(v) and N(V)(N[V]) denotes the open (closed) neighborhoods of a
vertex V. A vertex of degree one is called an pendent vertex. A vertex adjacent to pendent vertex is called the support

vertex. As usual Pp ) Cp ,Wp, K p and Kl,p are respectively the path, cycle, wheel, complete graph and star.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
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The notation &, (G)(c,(G)) is the minimum number of vertices (edges) in a vertex (edge) cover of G . Also
Bo(G)(B,(G)) is the maximum number of vertices (edges) in a maximum independent set of vertex (edge) of G . The
greatest distance between any two vertices of a connected graph (G is called the diameter of (G and is denoted by
diam(G) . The maximum (minimum) degree of a vertex V is denoted by A(G)(5(G)). For any real number X, [ x|
denotes the smallest integer not less than X and | x | denotes the greatest integer not greater than X . Acut vertex of a graph

is one whose removal increases the number of components. In general < X > to denote the subgraph induced by the set
of vertices X .

Spider is a tree with one vertex of degree at least three and all others with degree at most one. Caterpillar tree is
a tree in which all the vertices are within distance one of a central path.

Aset F < E(G) is said to be an edge dominating set if every edge in E(G) — F is adjacent to some edges in
F. The Edge domination number of G is the cardinality of smallest edge dominating set of G and is denoted by ;/'(G) .
This concept was introduced by Mitchell and Hedetniemi®.

A dominating set D of a graph G is an accurate dominating set, if \V — D has no dominating set of cardinality
| D | The accurate domination ¥, (G) is the minimum cardinality of an accurate dominating set. This concept was
introduced by Kulli and Kattimanit!.

Throughout the paper we consider a graph with vertices P > 4.

2 Preliminary Notes:
We need the following results to prove further results.

Theorem 212 1f G isa (|, ) graph without isolated vertex then — 3 <,"(G).
A(G)+1

In the next section we discuss results on Accurate edge domination number of a graph.

3 Accurate edge domination number of a graph:
In this we initiate the study of accurate edge domination is defined as below.

A edge dominating set F ofagraph G = (\/, E) is an accurate edge dominating set, if < E — F > has no
edge dominating set of cardinality | F | . The accurate edge domination number ¥ .. (G) is the minimum cardinality of an
accurate edge dominating set™.

In this paper we study the graph theoretical properties of ¥ ., (G) and many bounds were obtained in terms of

elements of G . For example, we consider the graph (G in the figure 3.1. The Accurate edge dominating set of G is

A={3,57}. Therefore ¥,.(G) =| A|= 3 .

Figure 3.1
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4 Results on accurate edge domination number Graph

Theorem 4.1 For any connected (p, q) graph G and if n >1 isan integer then,

p+4

3 if p=3n+2

P-1 oo
J/ae[Pp]: 3 if p=3n+1
pTJrS if p=3n+3

Proof. Let G = P, (G) be a connected graph with p>4. Let E(P,(G)) ={e,,e,,.-.£,} be the edge set of
P,(G) andlet F ={e,,e,,.../1<i<q}c E(P,(G)) be the minimum edge dominating set of P,(G). Let
{Vl,VZ,...Vp} be the vertex set of F’p (G) . Let K be the minimum edge dominating set of induced subgraph
<E(P,(G))-F >.if | F|# K| then A= F itself forms accurate edge dominating set of P,(G) . Otherwise,
consider F, < (E(P,(G)—F) . Let A=FuUF,.if <(E(P,(G))~A)> hasno edge dominating set of

cardinality | A| then A forms the accurate edge dominating set with minimum cardinality. We have the following cases.

Casel. Suppose Pp=3n+2.
Let V;,V,,...Va,,, be the path P,(G) and F ={e,,e,,...e,,,} forms minimum edge dominating set of
F’p (G) .1f K be the minimum edge dominating set of the induced subgraph < E(Pp (G))-F > then | F |5 K|,

which is a contradiction. So we consider € € (E — F) such that A= F U{e} forms the minimum accurate edge
dominating set of P, (G).

Therefore | A|=n+2.

= | A= n+2=p—+4.
Hence y,.(G) = p;4.

Case 2. Suppose p=3n+1.
Let F ={e,,e,,..,} be the edge dominating set of P,(G) and K ={e,,e,,...e,,;} be the minimum

edge dominating set of induced subgraph < E(Pp (G))—F > .cClarly, | F [/ K|.so A=F forms the minimum

-1
accurate edge dominating set of P,(G) . Thus, | A|=n but n= pT

Hence 7,.(G) = pT—l .

Case 3. Suppose p=3n+3.
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Let F ={e,,€,,...6,.,} forms the edge dominating set of P, (G) . If K be the minimum edge dominating set
of the induced subgraph E(P,(G))—F then | F |=| K'|, which is a contradiction. So we consider {€,} € (E — F)

suchthat A= F {e,} forms the minimum accurate edge dominating set of P,(G) . Therefore | A|=n+2.

=|AlFn+2= p+3.
3
Hence ;/ae(G)= p;_B.

Theorem 4.2 For any connected (p,q) graph G, ¥ [G]< 7,.[G].
Proof. Let G be a connected graph. Let F ={&,/1<i < q} < E(G) bethe minimum edge dominating set of G
such that | F |= 7 (G). Let K be minimum edge dominating set of induced subgraph < E — F > . If | F [ K| then

A=F itself forms a minimum accurate edge dominating set of G. Otherwise, consider F, < (E(Pp (G)—F), Let

A=Fu Fl. If < (E ( Pp (G)) — A) > has no edge dominating set of cardinality |A| then A forms the accurate edge
dominating set with minimum cardinality. Clearly, every accurate edge dominating set is a edge dominating set. Hence
| F || A|, Which gives ¥ [G]< 7..[G].

Theorem 4.3 A caterpillar tree T with each cut vertex of degree greater than or equal to three then

S+1 ifsis odd

Vel T]= % if s is even

Where s is the number of cut vertices in T.
Proof. Let T be a caterpillar tree of vertex set V. = {v, V2,...Vp} andlet C ={v,,v,,..v,/1<r < p}cV(T)

be the cut vertex set of T with deg(V;) >3 forall L<i<rsuchthat |C|=S.Let E ={€,,€,,..€,} be the edge

setof Tand let F ={e,,e,,...e/1<t< g} < E(T) be the minimum edge dominating set of T. If < E — F > has
no edge dominating set of cardinality |F| then A = F it self forms minimum accurate edge dominating set T. Otherwise,

consider F, < (E(T)—F) such that A=F UF, forms the minimum accurate edge dominating set of T if

<E —(FUF,) > has no edge dominating set of cardinality F U F, and | A=y, (T). We have the following

cases
Case 1. Suppose |C]| is odd.

Let {€,,€,,.6;/1< J<qg}e A. it follows that | A|=|C | +1.=>| A|= S+1. Hence y,, =S+1.
Case 2. Suppose |C]| is even.

Let {91,92,..ej/1S J<d}e Al itfollows that | A|=|C|. =| A|=S. Hence 7,,(G) = s.
Theorem 4.4 Let G be a star if and only if 7,,(G) = (p—q) +1.
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Proof. Suppose G be a star. Let F ={e} = E(G) be the minimum edge dominating set of G and also
K ={e,} be the edge dominating set of < E(G)—F >. But | F |=| K |. So consider an edge e, € (E — F) such that
A =F u{e,} forms the minimum accurate edge dominating setin G and induced subgraph < E(G) — (F U{e,}) >hasno

edge dominating set of cardinality | (F w{e,})|. We observe that | A|=2=1y,.(G) .
Then 1+ p+q—| A= p+q+1-2

= 1+p+g-|Al=Fp+q-1

since G is a star so 1 = p — q, above equality becomes

1+ p+g-|Al= p+g-(p-9)

= 1+p+0d-7,(G)=2q

Hence 7,.(G)=1+(p-q).

Conversely, Suppose 7,(G)=1+(p—-q).

From the above equality if p—q =1, it implies that ¥, (G) =2
Hence G is a star.

Theorem 4.5 For any connected (p, g) graph with A(G) >3 then y,. (G) < q—«, + 2 and equality holds for a
star.

Proof. Let G be connected graph with A(G)>3. Let M = {e,,e,...e;} be the set of all end edges. Suppose

B={e,e,..6,}< (E(G)— M) bethesetof edgessuch that d (€,,€;) = 2 forsome 1<i< f, 1< j<k then M UR

(R
where R B be the minimum set of edges which covers all the vertices in G such that |M UR |= o, (G) . Let
F ={e1,e2...ej/1S J £0} be the minimum number of edges covers all the edges of G. Suppose induced subgraph
< E(G) — F > hasno edge dominating set of cardinality |F| then A = F itself isa y,,(G). Suppose < E(G)-F > hasedge
dominating set of cardinality |F| then consider F, < (E(G)—F) such that A=F UF, forms minimum accurate edge
dominating set of G if induced subgraph < E(G) — (F U F,) > has no edge dominating set of cardinality | F U F, |.
Since P > 4 we have a connected graph G with at least 3 edges. It follows that AU (M UR) < E(G).
= |AK E(G)|-|M UR|+2. Hence y,,(G)<q-a,+2.
Suppose G is a Star. Clearly, | E(G)|=| M UR|= a,(G) . From Theorem 4.4 ¥,.(G) = 2. Therefore it follows that
72(G)=E|-|M UR|+2. Itimplies ¥,.(G)=0—a,+2.Hence 7,(G)=g—-a, +2.

Corollary 4.6 For any connected (p, q) graph then ¥, (G) < q—y (G) +2.

Theorem 4.7 For any connected (p > 4,q) graph then | (G) 1J<y“( )= rAq(é()G)11 "

Proof. It is known that from theorem’, A(Gq)+1 <y'(G) and since y [G]<y,[G]. Clearly, we see that the

lower bound L 1<7..(G) holds. By the Corollary 4.6,

A(G) +1
7.(G)<q-7 (G)+2

q
G)<qg- 2
72(G)=4 A(G)+1+
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q(A(G)+1)—¢
V2 (G) SW"‘Z

< _9A(G). +2
A(G)+1
9A(G)
Hence 7a(G) < |—A(G) +1—| +2
This achieves the upper bound.

Ve (G)

p+1
) 1

Proof. Let W,(G) be a wheel with p—1 vertices on the cycle and a single vertex at the center. Let

Theorem 4.8 For any wheel p >4, VoW, (G)] = I

VW, (G)) ={c,v;,v;,..V, 1} where c is the center vertex and {V;,V,,..V,,} vertices on the cycle. Let
EW,(G)) ={e,,&,,.-€,€,,,---8,} be the edge set of W, (G) where {e;,e,,..e;} be the p—1 edges incident to the
single vertex ¢ as well as vertices lies on cycle and {,,;,€,., ,...eq} be the edges incident to the vertices lies on the cycle.
Let F ={e }U{e;1,€,,--€,} be the minimum edge set covers all the edges of the wheel and let K be the minimum
edge dominating of set of < E(W (G)) - F >.If | F | K| then A=F s the accurate edge dominating setof W (G) -

Otherwise, consider F, < F suchthat A = F (U |, forms the minimum accurate edge dominating set of W, (G) if

p+1
2

+1
< E—(FUF,)> hasno edge dominating set cardinality | F U F, |. clearly, | A= p2 .= 7lW,(G)]=

Hence Y ae [(Wp (G)] = rpTJrl—l .

Theorem 4.9 For any connected (p, q) graph G then 7,.(G)+diam(G) < p+y (G).

Proof. Let M ={e,,e,,...e, /1<t < q} < E(G) be the minimum set of edges which constitute the longest
path between any two distinct vertices V;,V, €V (G) such that d(v,,v,) = diam(G). Let F ={e/1<i<q}
be the minimum edge dominating set of G such that | F |= y'(G) and let A={e;/1< j<q} be the minimum accurate edge

dominating set of G such that | A|= y,.(G). By the definition of y,,(G), < E(G)— A> has no edge dominating set of
cardinality |A|. We discuss in the following cases.
Case 1. Suppose edge dominating set F itself forms minimum accurate dominating set of G, then < E(G)—F > has no

edge dominating set of cardinality |F|. Thus |A=|F] it follows that d (v,,V,) < p. It implies | A|wd(v,,V,) < pU|F .
Hence y,.(G) +diam(G) < p+7 (G).

Case 2. Suppose cardinality of edge dominating set F is same as cardinality of edge dominating set of < E(G) -F>.
Then consider F U F, be the minimum edge dominating set of G and its cardinality is different from the cardinality of edge

dominating set of < E(G)—(F U F,)>.Then A=F UF, is accurate edge dominating set of G. Clearly, it follows that

|FUF |ud(v,v,) < pu| F|. It implies | Ajud(v,,v,) < pu| F|. Hence 7, (G)+diam(G) < p+y'(G).
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Theorem 4.10 For any connected (p, q) graph G, I—MT(G)T < B,(G)+3.

Proof. Let R ={Vv,.v,,..v,/1<1 < p} =V (G) be the maximum set of vertices such that d (U, V) > 2

and N(U) "N (v) = X forall u,v e S and x (V(G)-S) . Clearly, | S |= B,(G) .Let A={e,,&,,..e;/1< j<q}

be the minimum accurate edge dominating set of G and < E(G) — A> has no edge dominating set of cardinality |A|.

A
Clearly, lle <|R|+3. Hence FMT(G)T < B,(G)+3.

Theorem 4.11 Let G be a connected graph with §(G)>2 and diam(G) = 2 then y,, (G) <26(G) -1.
Proof. Let G be a connected graph with p>4. Let K ={e,h} < E(G) be the edges in which constitute the

diametral path in G such that diam(G) =2 and let v, €V (G) such that deg(v,) = 5(G) . We have the following
cases.

Case 1. Suppose 6(G)=2. We observe that F ={e ,e,} = E(G) be the y'(G) such that |[F|=2. Let
A={{e,e,}u{e}/3<1<q}c E(G) be the accurate edge dominating set of G. By the theorem 4.2, we have
7 (G) <7, (G) . Therefore 2<%, (G)<3. Thus | A|<2deg(v,)—1. It implies | A|<25(G)—-1. Hence
7.(G)<26(G) -1
Case 2. Suppose 8(G) > 2. We observe that F ={e,,e,,...e/1<t<q}c E(G) be the y (G) such that
|F[>2.Aset A={e,,e,,../L<1<q} is the accurate edge dominating set of G if < E(G)— A > has no
dominating set of cardinality |A|. Thus it follows that
|A|+6(G)-1<35(G)+1
|AI<26(G)-1
Hence 7,.(G) <25(G)-1.

Theorem 4.12 For any complete graph G = K , Vel K12 r§—|

Proof. Let V (G) = {Vl,vz,...vp} be the vertex set of G. The distance between any two vertices is exactly one
thatis dim(G) =1 and A(G) = p—-1=35(G) or A(v;) = p—1 forall 1<i< p then G is complete graph. Let
F={e,e,,. /11 <q}c E((G)) be the minimum edge dominating set of G. Let F' be the minimum edge

dominating set of induced subgraph < E(G)—F >. If | F |#| F' | then A=F itself forms accurate edge dominating set

of G. Otherwise, consider F;, < (E(G)—F) . Let A= F UF,.1f <(E(G)—A) > has no edge dominating set
of cardinality |A| then A forms the accurate edge dominating set with minimum cardinality.

Then (1+diam(G))y,.(G) > A(v,)+1

A(v,)+1

G)>_AW)*L
=722 T am©)
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A(v,))+1 _ p-1+1
1+diam(G) 2

= 74 (G) 2

Hence ;/ae[Kp G)]= FgT .

Theorem 4.13 For any cycle Cp then ¥, (G) = LEJ +1.

Proof. Let Cp be a cycle with p>4 and it is 2-regular graph that is deg(v;) =2=A(C,) for all i. Let
F={vv,/i=}1<i<p,l<j<p}c E(C,) betheedge dominating set of Cp. Let K be the minimum edge dominating
set of induced subgraph < E(G)—F >.1f | F |# K| then A=F itself forms accurate edge dominating set of G.
Otherwise, consider F, < (E(G)—F),Let A= FUF,.If <(E(G)—A)> has no edge dominating set of
cardinality |A| then A forms the accurate edge dominating set with minimum cardinality.

Since G = Cp is a 2-regular graph then degree of each vertex is two and the number of vertices is equal to

number of edges. We observe that A=1{e,,&,,...e b l} forms the minimum accurate edge dominating set of Cp such that
— 1+

L2

| A= 7,.(G) . From Theorem’, ﬁ <y'(G) it implies that Z—LSJ/(G).
But P <P Therefore Py 7' (G).
2+1 2

By the theorem 4.2, we have y (G)<y,.(G) so above inequality becomes
¥'(G)<7,.(G) = L§J+l
Hence 7, (C,) = Lgi +1.

Theorem 4.14 Let G be a 3-regular graph then yae(G)éf%T.

Proof. Since G = (p = 2N, = 3n+3) for N > 1 is 3-regular graph with deg(Vv;) = 3 foralli and each
edge adjacent to exactly four edges in G that is deg (ej) =4 for all j. Let V ={v,,v,,..v,,} be the vertex of G and
E ={e,,€,,--83.5} be the edge set of G. Let A ={g/1<t<q} be the accurate edge dominating set of G such that
| Al= 7. (G). It follows that g > 2| A]. It implies that | Al< F%T. Hence 7,.(G) < F%T

Theorem 4.15 For any spider tree T and diam (T) <10, 7, (T) < diam(T)+A(T).

Proof. Let T be aspider. Let v, €V (T) bethe head vertex such that A(v,) >3 and {V,,V5,..V,} € (V(T) —V,)
suchthat A(v,) <2 forall 2<i<p.Let F ={e ,e,,...e,/1 <t < g} be the minimum edge dominating set of T and

there exits at least one edge x e F incidentto v,. Also R ={e,,€,,...8,/1<d < q} be the set of all edges constitute
the longest path in T such that | R|= diam(T) <10. Suppose < E — F > has no edge dominating set of cardinality |F|

then A=F forms y,,(T) . Otherwise, A= F U{e,,e,,...e.} forms minimum accurate edge dominating set of T. Clearly,
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| Al< deg(v,) wdiam(T). Hence y,,(T) < diam(T)+A(T).
Theorem 4.16 Let G be a connected (P >4,q) graph suchthatG and G are connected graph then,

1) 7,.(G)+7.(G)<2q.
2) 720(G) 74 (G) 2 LEJ |

5 Conclusion

In this paper we discussed the accurate edge domination number of a connected graph. Also we obtained the
relationship between edge domination number, edge covering number, maximum and minimum degree, maximum independent
number and diameter of accurate edge domination number of a graph.
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