

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES

An International Open Free Access Peer Reviewed Research Journal of Mathematics website:- www.ultrascientist.org
Estd. 1989

Some New Multiplicative Geometric-Arithmetic Indices

V.R. KULLI
Department of Mathematics Gulbarga University, Gulbarga 585106, India
Corresponding Author Email: vrkulli@gmail.com
http://dx.doi.org/10.22147/jusps-A/290201

Acceptance Date 24th Dec., 2016, Online Publication Date 2nd Jan., 2017

Abstract

In this paper, we propose some new topological indices: second, third, fourth and fifth multiplicative geometricarithmetic indices of a molecular graph. A topological index is a numeric quantity from the structural graph of a molecule. Here, we compute the fifth multiplicative geometric arithmetic index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of $T U C_{4} C_{8}[p, q]$.

Key words: molecular graph, fifth multiplicative geometric-arithmetic index, nanostructures.
Mathematics Subject Classification: 05C05, 05C12, 05C35,

1. Introduction

In this paper, we consider only finite, simple and connected graph with a vertex set $V(G)$ and an edge set $E(G)$. A molecular graph or a chemical graph is a simple graph related to the structure of a chemical compound. Each vertex of a chemical graph represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a numerical parameter mathematically derived from the graph structure. These indices are useful for establishing correlation between the structure of a molecular compound and its physico-chemical properties, see ${ }^{1}$.

The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. Let $S_{G}(v)$ denote the sum of degrees of all vertices adjacent to a vertex v. The line graph $L(G)$ of a graph G is the graph whose vertex set corresponds to the edges of G such that two vertices of $L(G)$ are adjacent if the corresponding edges of G are adjacent. The subdivision graph $S(G)$ of a graph G is the graph obtained from G by replacing each of its edges by a path of length two. We refer to ${ }^{2,3}$ for undefined term and notation.

We need the following results
Lemma 1^{3}. Let G be a (p, q) graph. Then $L(G)$ has q vertices and $\frac{1}{2} \sum_{i=1}^{p} d_{G}\left(u_{i}\right)^{2}-q$ edges.
Lemma 2^{3}. Let G be a (p, q) graph. Then $S(G)$ has $p+q$ vertices and $2 q$ edges.
One of the well-known and widely used topological index is the product connectivity index or Randiæ index

[^0]introduced by Randiæ in ${ }^{4}$.
Motivated by the definition of the product connectivity index and its wide applications, Kulli [5] introduced the first multiplicative geometric-arithmetic index of a graph G and it is defined as
$$
G A_{1} I I(G)=\prod_{u v \in E(G)} \frac{2 \sqrt{d_{G}(u) d_{G}(v)}}{d_{G}(u)+d_{G}(v)}
$$

Recently many other multiplicative indices were studied, for example, in $6,7,8,9,10,11,12,13,14$.
Motivated by the definition of the first multiplicative geometric-arithmetic index and by previous research on topological indices, we now propose the second, third, fourth and fifth multiplicative geometric-arithmetic indices of a graph as follows:

The second multiplicative geometric-arithmetic index of a graph G is defined as

$$
G A_{2} I I(G)=\prod_{u v \in E(G)} \frac{2 \sqrt{n_{u} n_{v}}}{n_{u}+n_{v}}
$$

where the number n_{u} of vertices of G lying closer to the vertex u than to the vertex v for the edge $u v$ of a graph G.
The third ${ }^{u}$ multiplicative geometric-arithmetic index of a graph G is defined as

$$
G A_{3} I I(G)=\prod_{u v \in E(G)} \frac{2 \sqrt{m_{u} m_{v}}}{m_{u}+m_{v}}
$$

where the number m_{u} of edges of G lying closer to the vertex u than to the vertex v for the edge $u v$ of a graph G. The fourth multiplicative geometric-arithmetic index of a graph G is defined as

$$
G A_{4} I I(G)=\prod_{u v \in E(G)} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}
$$

where the number $\varepsilon(u)$ is the eccentricity of all vertices adjacent to a vertex u.
The fifth multiplicative geometric-arithmetic index of a graph G is defined as

$$
G A_{5} I I(G)=\prod_{u v \in E(G)} \frac{2 \sqrt{S_{G}(u) S_{G}(v)}}{S_{G}(u)+S_{G}(v)}, \quad \text { where } S_{G}(u)=\sum_{u v \in E(G)} d_{G}(v)
$$

II^{14}, Todeshine et al. introduced the first and second multiplicative Zagreb indices of a graph G and they are defined as

$$
I I_{1}(G)=\prod_{u \in V(G)} d_{G}(u)^{2}, \quad \quad I_{2}(G)=\prod_{u v \in E(G)} d_{G}(u) d_{G}(v)
$$

In ${ }^{15}$ the first multiplicative Zagreb index is defined as

$$
I I_{1}^{*}(G)=\prod_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

We now define a new version of multiplicative Zagreb indices as follows.

$$
I I_{1}^{2}(G)=\prod_{u \in V(G)} n_{u}^{2}, \quad I I_{2}^{2}(G)=\prod_{u v \in E(G)} n_{u} n_{v}, \quad I I_{1}^{2^{*}}(G)=\prod_{u v \in E(G)}\left(n_{u}+n_{v}\right)
$$

Also we define a new version of multiplicative Zagreb indices as follows:

$$
I I_{1}^{3}(G)=\prod_{u \in V(G)} m_{u}^{2}, \quad I I_{2}^{3}(G)=\prod_{u v \in E(G)} m_{u} m_{v}, \quad I I_{1}^{3^{*}}(G)=\prod_{u v \in E(G)}\left(m_{u}+m_{v}\right) .
$$

We define another version of multiplicative Zagreb indices as follows:

$$
I I_{1}^{4}(G)=\prod_{u \in V(G)} \varepsilon(u)^{2}, \quad I I_{2}^{4}(G)=\prod_{u v \in E(G)} \varepsilon(u) \varepsilon(v), I I_{1}^{4^{*}}(G)=\prod_{u v \in E(G)}[\varepsilon(u)+\varepsilon(v)]
$$

We also define another version of multiplicative Zagreb indices as follows:

$$
I I_{1}^{5}(G)=\prod_{u \in V(G)} S_{G}(u)^{2}, I I_{2}^{5}(G)=\prod_{u v \in E(G)} S_{G}(u) S_{G}(v), I I_{1}^{5^{*}}(G)=\prod_{u v \in E(G)}\left[S_{G}(u)+S_{G}(v)\right]
$$

In this paper; we determine the fifth multiplicative geometric arithmetic index of line graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of $T U C_{4} C_{8}[p, q]$.

2. 2D-lattice, nanotube, nanotorus of $T U C_{4} C_{8}[p, q]$:

We consider the graph of 2D-lattice nanotube and nanotorus of $T U C_{4} C_{8}[p, q]$ where p and q denote the number of squares in a row and the number of rows of squares respectively. These graphs are shown in Figure 1 .

Figure 1
(b) $T U C_{4} C_{8}[4,2]$ nanotube
(c) $T U C_{4} C_{8}[4,2]$ nanotorus
(a)2D-lattice of $T U C_{4} C_{8}[4,2]$

By algebraic method, we get $\left|V\left(G_{1}\right)=4 p q,\left|E\left(G_{1}\right)\right|=6 p q-p-q ;\left|V\left(H_{1}\right)\right|=4 p q,\left|E\left(H_{1}\right)\right|=6 p q-p,\left|V\left(K_{1}\right)\right|=4 p q\right.$, $\left|E\left(K_{1}\right)\right|=6 p q$.
3. Results for $2 D$-Lattice of $\mathrm{TUC}_{4} C_{8}[p, q]$:

The line graph of the subdivision graph of 2D-lattice of $T U C_{4} C_{8}[p, q]$ is shown Figure 2(b).

(a)
(b)

Figure 2
(b) line graph of the subdivision graph of $T U C_{4} C_{8}[4,2]$

division graph of 2D-lattice of $T U C_{4} C_{8}[p, q]$. Then
(a) subdivision graph of 2D-lattice of $T U C_{4} C_{8}[4,2]$

Theorem 1. Let G be the line graph of the subdivision graph of

$$
\begin{aligned}
G A_{5} I I(G) & =\left(\frac{4 \sqrt{5}}{9}\right)^{8} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4(p+q-2)} \times\left(\frac{12 \sqrt{2}}{17}\right)^{8(p+q-2)} & & \text { if } p>1, q>1, \\
& =\left(\frac{4 \sqrt{5}}{9}\right)^{4} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4(p-1)} \times\left(\frac{12 \sqrt{2}}{17}\right)^{4(p-1)} & & \text { if } p>1, q=1 .
\end{aligned}
$$

Proof: The 2D-lattice of $T U C_{4} C_{8}[p, q]$ is a graph G with $4 p q$ vertices and $6 p q-p-q$ edges. By Lemma 2, the subdivision graph of 2 D -lattice of $T U C_{4} C_{8}[p, q]$ is a graph with $10 p q-p-q$ vertices and $2(6 p q-p-q)$ edges. Thus by Lemma $1, G$ has $2(6 p q-p-q)$ vertices and $18 p q-5 p-5 q$ edges. It is easy to see that the vertices of G are either of degree 2 or 3, see Figure 2. Therefore we have partition of the edge set of G as follows.

$S_{G}(u), S_{G}(v) \backslash u v \in E(G)$	$(4,4)$	$(4,5)$	$(5,5)$	$(5,8)$	$(8,9)$	$(9,9)$	
Number of edges	4	8	$2(p+q-4)$	$4(p+q-2)$	$8(p+q-2)$	$2(9 p q+10)-19(p+q)$	
Table 1. Edge partition of G with $p>1$ and $q>1$							
$S_{G}(u), S_{G}(v) \backslash u v \in E(G)$	$(4,4)$	$(4,5)$	$(5,5)$	$(5,8)$	$(8,8)$	$(8,9)$	$(9,9)$
Number of edges	6	4	$2(p-2)$	$4(p-1)$	$2(p-1)$	$4(p-1)$	$p-1$

Table 2. Edge partition of G with $p>1$ and $q=1$.
Case 1. Suppose $p>1$ and $q>1$.
By algebraic method, we obtain $\left|V_{4}\right|=8,\left|V_{5}\right|=4(p+q-2)\left|V_{8}\right|=4(p+q-2)$, and $\left|V_{9}\right|=2(6 p q-5 p-5 q+4)$ in G. Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 1.

$$
\begin{aligned}
G A_{5} I I(G) & =\prod_{u v \in E(G)} \frac{2 \sqrt{S_{G}(u) S_{G}(v)}}{S_{G}(u)+S_{G}(v)} \\
& =\left(\frac{2 \sqrt{4 \times 4}}{4+4}\right)^{4} \times\left(\frac{2 \sqrt{4 \times 5}}{4+5}\right)^{8} \times\left(\frac{2 \sqrt{5 \times 5}}{5+5}\right)^{2(p+q-4)} \times\left(\frac{2 \sqrt{5 \times 8}}{5+8}\right)^{4(p+q-2)} \\
& \times\left(\frac{2 \sqrt{8 \times 9}}{8+9}\right)^{8(p+q-2)} \times\left(\frac{2 \sqrt{9 \times 9}}{9+9}\right)^{2(9 p q+10)-19(p+q)} \\
& =(1)^{4} \times\left(\frac{4 \sqrt{5}}{9}\right)^{8} \times(1)^{2(p+q-4)} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4(p+q-2)} \times\left(\frac{12 \sqrt{2}}{17}\right)^{8(p+q-2)} \times(1)^{2(9 p q+10)-19(p+q)} \\
& =\left(\frac{4 \sqrt{5}}{9}\right)^{8} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4(p+q-2)} \times\left(\frac{12 \sqrt{2}}{17}\right)^{8(p+q-2)}
\end{aligned}
$$

Case 2. Suppose $p>1$ and $q=1$.
The edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 2.

$$
\begin{aligned}
G A_{5} I I(G) & =\prod_{u v \in E(G)} \frac{2 \sqrt{S_{G}(u) S_{G}(v)}}{S_{G}(u)+S_{G}(v)} \\
& =\left(\frac{2 \sqrt{4 \times 4}}{4+4}\right)^{6} \times\left(\frac{2 \sqrt{4 \times 5}}{4+5}\right)^{4} \times\left(\frac{2 \sqrt{5 \times 5}}{5+5}\right)^{2(p-2)} \times\left(\frac{2 \sqrt{5 \times 8}}{5+8}\right)^{4(p-1)} \\
& \times\left(\frac{2 \sqrt{8 \times 8}}{8+8}\right)^{2(p-1)} \times\left(\frac{2 \sqrt{8 \times 9}}{8+9}\right)^{4(p-1)} \times\left(\frac{2 \sqrt{9 \times 9}}{9+9}\right)^{(p-1)} \\
& =(1)^{6} \times\left(\frac{4 \sqrt{5}}{9}\right)^{4} \times(1)^{2(p-2)} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4(p-1)} \times(1)^{2(p-1)} \times\left(\frac{12 \sqrt{2}}{17}\right)^{4(p-1)} \times(1)^{p-1} \\
& =\left(\frac{4 \sqrt{5}}{9}\right)^{4} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4(p-1)} \times\left(\frac{12 \sqrt{2}}{17}\right)^{4(p-1)}
\end{aligned}
$$

4. Results for $\mathrm{TUC}_{4} C_{8}[p, q]$ nanotube :

The line graph of the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube is shown in Figure 3(b)

(a) Subdivision graph of
$T U C_{4} C_{8}[4,2]$ nanotube

Theorem 2. Let H be the line graph of the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube. Then

$$
\begin{aligned}
G A_{5} I I(H) & =\left(\frac{4 \sqrt{10}}{13}\right)^{4 p} \times\left(\frac{12 \sqrt{2}}{17}\right)^{8 p}, \quad \text { if } p>1 \text { and } q>1 \\
& =\left(\frac{4 \sqrt{10}}{13}\right)^{4 p} \times\left(\frac{12 \sqrt{2}}{17}\right)^{4 p}, \quad \text { if } p>1 \text { and } q=1
\end{aligned}
$$

Proof: The $T U C_{4} C_{8}[p, q]$ nanotube is a graph H with $4 p q$ vertices and $6 p q-p$ edges. By Lemma 2, the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube is a graph with $10 p q-p$ vertices and $12 p q-2 p$ edges. Thus by Lemma $1, H$ has $12 p q-2 p$ vertices and $18 p q-5 p$ edges. We see that in H, there are $4 p$ vertices are of degree 2 and remaining all vertices are of degree 3. Therefore we have partition of the edge set of H as follows:

$S_{H}(u), S_{H}(v) \backslash u v \in E(H)$	$(5,5)$	$(5,8)$	$(8,9)$	$(9,9)$
Number of edges	$2 p$	$4 p$	$8 p$	$18 p q-19 p$
	Table 3. Edge partition of H with $p>1$ and $q>1$.			
$S_{H}(u), S_{H}(v) \backslash u v \in E(H)$	$(5,5)$	$(5,8)$	$(8,8)$	$(8,9)(9,9)$
Number of edges	$2 p$	$4 p$	$2 p$	$4 p$

Table 4. Edge partition of H with $p>1$ and $q=1$
Case 1: Suppose $p>1$ and $q>1$.
By algebraic method, we obtain $\left|V_{5}\right|=4 p,\left|V_{8}\right|=4 p$ and $\left|V_{9}\right|=2(6 p q-5 p)$ in H. Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 3.

$$
\begin{aligned}
G A_{5} I I(H) & =\prod_{u v \in E(H)} \frac{2 \sqrt{S_{H}(u) S_{H}(v)}}{S_{H}(u)+S_{H}(v)} \\
& =\left(\frac{2 \sqrt{5 \times 5}}{5+5}\right)^{2 p} \times\left(\frac{2 \sqrt{5 \times 8}}{5+8}\right)^{4 p} \times\left(\frac{2 \sqrt{8 \times 9}}{8+9}\right)^{8 p} \times\left(\frac{2 \sqrt{9 \times 9}}{9+9}\right)^{18 p q-19 p} \\
& =(1)^{2 p} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4 p} \times\left(\frac{12 \sqrt{2}}{17}\right)^{8 p} \times(1)^{18 p q-19 p}=\left(\frac{4 \sqrt{10}}{13}\right)^{4 p} \times\left(\frac{12 \sqrt{2}}{17}\right)^{8 p}
\end{aligned}
$$

Case 2. Suppose $p>1$ and $q=1$.
The edge partition based on the degree sum of neighbor vertices of each vertex is obtained as given in Table 4.

$$
\begin{aligned}
G A_{5} I I(H) & =\prod_{u v \in E(H)} \frac{2 \sqrt{S_{H}(u) S_{H}(v)}}{S_{H}(u)+S_{H}(v)} \\
& =\left(\frac{2 \sqrt{5 \times 5}}{5+5}\right)^{2 p} \times\left(\frac{2 \sqrt{5 \times 8}}{5+8}\right)^{4 p} \times\left(\frac{2 \sqrt{8 \times 8}}{8+8}\right)^{2 p} \times\left(\frac{2 \sqrt{8 \times 9}}{8+9}\right)^{4 p} \times\left(\frac{2 \sqrt{9 \times 9}}{9+9}\right)^{p} \\
& =(1)^{2 p} \times\left(\frac{4 \sqrt{10}}{13}\right)^{4 p} \times(1)^{2 p} \times\left(\frac{12 \sqrt{2}}{17}\right)^{4 p} \times(1)^{p} \\
& =\left(\frac{4 \sqrt{10}}{13}\right)^{4 p} \times\left(\frac{12 \sqrt{2}}{17}\right)^{4 p}
\end{aligned}
$$

5. Results for $\mathrm{TUC}_{4} \mathrm{C}_{8}[p, q]$ nanotorus :

The line graph of the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotorus is shown in Figure 4 (b).

(a) subdivision graph of $T U C_{4} C_{8}[4,2]$ nanotorus

(b)
(b) line graph of subdivision graph of $T U C_{4} C_{8}[4,2]$ nanotorus.

Theorem 3. Let K be the line graph of the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanoturus. Then $G A_{5} I I(K)=1$.
Proof: Let K be the line graph of subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotorus with $4 p q$ vertices and $6 p q$ edges. Then Lemma 2, the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotorus is a graph with $10 p q$ vertices and $12 p q$ edges. Thus by Lemma 1 , K has $12 p q$ vertices and $18 p q$ edges. We see easily that in $K,\left|V_{9}\right|=12 p q$ and we have edge partition based on the degree sum of neighbor vertices of each vertex as given in Table 5.

$S_{K}(u), S_{K}(v) \backslash u v \in E(K)$	$(9,9)$
\quad Number of edges	$18 p q$

Table 5. Edge partition of K.

$$
G A_{5} I I(K)=\prod_{u v \in E(K)} \frac{2 \sqrt{S_{K}(u) S_{K}(v)}}{S_{K}(u)+S_{K}(v)}=\left(\frac{2 \sqrt{9 \times 9}}{9+9}\right)^{18 p q}=1 .
$$

References

1. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
2. V.R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
3. F. Harary, Graph Theory, Addison Wesley, Reading, MA (1969).
4. M. Randić, On characterization of molecular branching, Journal of the American Chemical Society, 97(23), 6609-6615 (1975).
5. V.R. Kulli, Multiplicative connectivity indices of certain nanotubes, Annals of Pure and Applied Mathematics, 12(2) 169-176 (2016).
DOI: http://dx.doi.org/10.22457/apam.v12n2a8.
6. V.R. Kulli, First multiplicative K Banhatti index and coindex of graphs, Annals of Pure and Applied Mathematics, 11(2), 79-82 (2016).
7. V.R. Kulli, Second multiplicative K Banhatti index and coindex of graphs, Journal of Computer and Mathematical Sciences, 7(5), 254-258 (2016).
8. V.R. Kulli, Multiplicative K hyper-Banhatti indices and coindices of graphs, International Journal of Mathematical Archive, 7(6), 60-65 (2016).
9. V.R. Kulli, On multiplicative K-Banhatti and multiplicative K hyper-Banhatti indices of V-Phenylenic nanotubes and nanotorus, Annals of Pure and Applied Mathematics, 11(2), 145-150 (2016).
10. V.R. Kulli, Multiplicative connectivity indices of nanostructures, Journal of Ultra Scientist of Physical Sciencs, A 29(1), (2017) 1-10. DOI: http://dx.doi.org/10.22147/jusps-A/290101
11. V.R. Kulli, General multiplicative Zagreb indices of $T U C_{4} C_{8}[m, n]$ and $T U C_{4}[m, n]$ nanotubes, International Journal of Fuzzy Mathematical Archive, 11(1), 39-43 (2016). http://dx.doi.org/10.22457/ijfma.v11n1a6.
12. V.R. Kulli, Multiplicative connectivity indices of $T U C_{4} C_{8}[m, n]$ and $T U C_{4}[m, n]$ nanotubes, Journal of Computer and Mathematical Sciences, 7(11), 599-605 (2016).
13. V.R. Kulli, Some new multiplicative atom bond connectivity indices, Annals of Pure and Applied Mathematics, 13(1), 1-7 (2017).
14. R. Todeshine and V. Consonni, New local vertex invariants and descriptors based on functions of vertex degrees, MATCH Commun. Math. Comput. Chem. 64, 359-372 (2010).
15. M. Eliasi, A. Irammanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68, 217-230 (2012).
16. S.M. Hosamani, Computing sanskruti index of nanostructures, J. Appl. Math. Comput. DoI: 10.1007/s12190-016-1016-9.

[^0]: This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)

