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Abstract

In this work, we discuss the existence of fixed points of continuous contracting mappings defined on dislocated
quasi-metric space. This work is a continuity of the previous works of Isufati.
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1 Introduction

The Polish mathematician Stefan Banach1 proved a theorem which ensures, under appropriate conditions, the
existence and uniqueness of a fixed point. It is well known as a Banach fixed point theorem. The existence of a fixed point
playes an important role in several area of mathematics, physics and chemistry. Isufati6 and Zeyada5 have extended,
generalized and improved Banach fixed point theorem in different ways.

The aim of this paper is to obtain a fixed point theorem in the generalized form for continuous contracting
mappings in dislocated quasi-metric space.

2 Preliminaries:
Definition 2.15 Let X be a non empty set and let d : X × X  [0, ) be a function satisfying following conditions:

(i) d(x, y) = d (y, x) = 0, implies x = y,
(ii) d(x, y)  d (x, z) + d(z, y), for all x, y, z  X.

Then d is called a dislocated quasi-metric on X. If d satisfies d(x, y) = d (y, x), then it is called dislocated metric.
Definition 2.25 A sequence {xn} in dq-metric space (dislocated quasi-metric space) (X, d) is called Cauchy

sequence if for, given ε > 0, there exist n0 N, such that  m, n  n0, implies d(xm, xn) < ε or d(xn, xm) < ε i.e. min {d(xm,
xn),d(xn, xm)} < ε.

Definition 2.35   A sequence {xn} dislocated quasi-convergent to x if
limn d(xn, x) = limn d(x, xn) = 0
In this case x is called a dq-limit of {xn} and we write xn  x.
Definition 2.45  A  dq-metric space (X, d) is called complete if every Cauchy sequence in it is a dq-convergent.
Definition 2.55  Let (X, d) be a dq-metric space. A map T : X  X is called contraction if there exists 0  λ  1
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such that
d(Tx, Ty)  λ d(x, y), for all x,y  X.

3 Main results
       Theorem 3.1 Let (X, d) be a complete dq-metric space and let T : X  X be a continuous mapping satisfying the
following conditions

d(Tx, Ty) 
)y,x(d1

)]Ty,x(d1)[Ty,y(d



 + β d(x,y) +  d(Tx, y)

for all x,y  X, α > 0, β > 0, γ > 0, α + β + γ < 1. Then T has a unique fixed point.
Proof : Let xo  X and define a sequence {xn} in X such that
T(x0) = x1, T(x1)= x2 ............, T(xn) = xn+1.............

Consider, d(xn, xn+1) = d(Txn-1, Txn)

                                
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)]x,x(d1)[x,x(d
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

  + β d(xn-1,xn) + γ d(xn, xn)

Therefore, d(xn, xn+1)  



1

d(xn-1, xn)

                                = λ d(xn-1, xn)

Where λ = 



1  with 0  λ  1. In a similar way we will show that

d(xn-1, xn)  d(xn-2, xn-1)
and d(xn, xn+1) 

2 d(xn-2, xn-1)
Thus d(xn, xn+1) 

n d(x1, x0)
Since 0  λ < 1, as n  λn  0. Hence {xn} is a dq-cauchy sequence in X. Thus {xn} dislocated quasi-convergences to
some t0. Since T is continuous, we have

T(t0) = lim T(xn)= lim xn+1 = t0.
Thus T(t0) = t0. Hence T has a fixed point.

Uniqueness : Let x be a fixed point of T. Then by given condition, we have
d(x, x)  d(Tx, Tx)

                            
)x,x(d1

)]Tx,x(d1)[Tx,x(d



  + β d(x, x) + γ d(Tx, x)

 (α + β + γ)d (x, x). Which gives d(x, x) = 0, since 0  α + β + γ < 1 and d(x, x)  0. Thus d(x, x)  0, if  x  is  fixed
point of T.
Let x,y  X be fixed points of T, i.e. Tx = x, Ty = y.
Then by given condition,

    d(x, y) = d(Tx, Ty)

 
)y,x(d1

)]Tx,x(d1)[Tx,x(d



  + β d(x, y) + γ d(Tx, y)

                               (β + γ)d (x, y). Which gives d(x, y) = 0, since 0  β + γ < 1 and d(x, y)  0. Similarly d(y, x)= 0 and
hence x = y.
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Thus fixed point of T is unique.
Remark:
(i) If we put  = 0 we obtained Theorem 3.1 of 5.
(ii)  If we put  =  = 0 we obtain Theorem 2.8 of 4.
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