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Abstract

 In this paper, we prove a fixed point theorem for self mappings satisfying a new contractive type condition in a
compact metric space.
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Introduction

In 1922, the Polish mathematician Stefan Banach proved a theorem which ensures, under appropriate conditions,
the existence and uniqueness of a fixed point. His result is called Banachs fixed point theorem. This result provides a
technique for solving variety of applied problems in mathematical science and engineering. Many authors like Edalstien1,
Kanon3, Soni4 and Sahu7 have extended, generalized and improved Banach fixed point theorem in different ways.
In this paper, we extend the work of Sahu for self mapping satisfying a new contractive type condition in a compact metric
space.
Throughout this paper the compact metric space (X, d) is denoted by X.

Main Result
Theorem : Let F be a continuousself mapping defined on a compact metric space X with
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+ k4[d(x, Fx) + d(y, Fx)] + k5[d(x, Fy) +d(y, Fx)]+ k6 d(x, y)                                            (1)
x, y  X, x  y and k1 + k2 + k3 + 2k4 + 4k5 + 2k6< 2, then F has a fixed point. Further when k2+ 2k4 + 4k5 + 2k6<

2. Then F has a unique fixed point.
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Proof:  First we define a function G on X as follows, Gx = d(x, Fx).
Since d and Fare continuous on X, therefore G is also continuous on X.
Since X is compact, there exist a point p X such that
Gp = inf {Gx : x  X} (2)

If       Gp = 0, then d(p, Fp) = 0 i.e. p = Fp
So      G(Fp) = d(Fp, F(Fp))
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+ k4[d(p, Fp) + d(Fp, Fp)] + k5[d(p, F(Fp)) + d(Fp, Fp)] + k6 d(p, Fp).

Thus    d(Fp, F(Fp)) 
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i.e.  d(Fp, F(Fp))  k  d(p, Fp).

where k = 

 

)
22

(1

2

5
21

654
3

kkk

kkk
k




  < 1, Since k1 + k2 + k3 + 2k4 + 4k5 + 2k6 < 2.

Thus G(Fp)< Gp, which is contradiction to the condition (2).
So Fp = p. Consequently p is a fixed point of F in X.
Now we show that p is unique. For suppose q be other fixed point such that Fq = q,

Then  d(p, q) =d(Fp, Fq)   k1  
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        +  k4[d(p, Fp) + d(q, Fp)] + k5[d(p, Fq) + d(q, Fp)] + k6 d(p, q).

Thus  d(p, q) < (
2

k 2  +k4+ 2k5 + k6) d(p, q).



Which is a contradiction because  k2+ 2k4 + 4k5 + 2k6  <  2.
Thus  d(p, q) = 0 i. e. p = q.
Hence F has a unique fixed point.

Remark:
(i) If k1 = k2 = k3 = k4 = k5 = 0 and k6 = 1then the theorem reduce to Edelstien1.
(ii) If  k5 = 0 then the theorem reduce to Sahu7.
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