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Abstract

In this chapter we discuss the batch service vacation model. In such system, customers arrive according to a
Poisson process and are served in batches of maximum size b and minimum thre shold a. The server takes a single vacation
when it finds less than a customers after the service completion.
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Introduction

Consider the 
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
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 /1b)(a,M/G queue with batch

service  vacation  model. The steady state of the system can
be described by the following random variable.
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Ls = The number of customers Present in the system,
T =  The residual service time of the batch in service,
V =  The residual vacation time for the server on vacation.

There are difference in the definitions of  and T
between the Batch service Model and the batch arrival
Model. We define
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It follows from the above that
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It is clear that 0,n),n(wnπ   represent the Prob. of
n customers in the queue when the server is busy at arbitrary
time instants.

By considering the steady-state transitions, we
obtain the following system of differential difference
equations.
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Taking the LST on both sides of the above equation (1) to
(5).
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Now using equation (1) & (2) and equation (6) to

(10) we obtain a set of Results that the later lead to queue
length distribution at various epochs.

Lemma 1:- There exist two relations
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Proof: From equation (A) and letting n=1, we
obtain
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We get equation (11) of lemma 1.
Setting S=0 from equation (6) & (7) we get
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Summing over n equation (14) adding equation

(13) and using equation (11) we obtain equation (12).
Define the non-serving period c

νD  as the sum of
vacation V and on Idle time Iv, we have the following  Lemma.

Lemma 2: The Expected value of c
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Where 
iP is the stationary probability that i customers are

left at a departure instant of a batch, and

dv(x)λxe
j!

jx)(

0
jh 
 



Proof : Let N (t) [The number of customers in the
system at time (t)] be the state of system at time t. Thus, at
the end of busy period, N (t) enters the set of vacation
states  1a.0,1,2,....S  . The conditional probability

that N (t) enters state si , given that N (t) enters, then
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For fixed si , if i)1(aj   customers arrive
during a vacation with probability hj, then at the vacation
completion instant, N(t) enters the let of idle states

 jiak:KU  . That N (t) leaves the Set U when
a - (i+j) customers arrive. Thus the expected time of N (t) in
is in

 /λjia 
Using the conditional Argument, Then
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