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Abstract

 The  Collatz conjecture is an open conjecture in mathematics named so after Lothar Collatz who proposed it in
1937. It is also known as 13 n  conjecture, the Ulam conjecture (after Stanislaw Ulam), Kakutanis problem (after Shizuo
Kakutani) and so on. Several various generalization of the Collatz conjecture has been carried. In this paper a new
generalization of  the Collatz conjecture called as the pn 3  conjecture; where p  is a prime is proposed. It functions on

pn 3  and pn 3 , and for any starting number n ,  its sequence eventually enters a finite cycle and there are finitely
many such cycles. The 13 n  conjecture, is a special case of the pn 3  conjecture when p  is 1.

Key word : Collatz  Conjecture; Kakutani’s Conjecture ; 13 n  Conjecture; pn 3  Conjecture.

1  Introduction

The Collatz conjecture is long  standing open conjecture in number theory.  Paul Erdos had commented about the
Collatz conjecture that “Mathematics may not be ready for such problems”. The Collatz conjecture has been extensively
studied by several researchers1,2,3,4,5. A novel theoretical framework was formulated for information discovery using the
Collatz conjecture data by Idowu6. Generalizing the odd part of the Collatz conjecture was studied by7. Several various
generalization of the Collatz conjecture was studied by8. Various generalization are listed and given in number theory
website of Keith Matthews9.

This paper proposes a new conjecture which is a generalization of the Collatz conjecture. This new conjecture
is called as the pn 3  conjecture, where p  is a prime. This paper is organised into four sections. First section is
introductory in nature. Section two recalls the Collatz conjecture and its various generalizations so that the paper is self
contained. Section three proposes the new pn 3  conjecture and illustrates it by examples. The conclusions and future
study are given in the last section.
2  Collatz’s Conjecture and its various generalizations :
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2.1  Collatz Conjecture :
The 13 n  conjecture or the Collatz conjecture is summarized as follows :

Take any positive integer n . If n  is even divide it by 2 to get /2n . If n  is odd multiply it by 3 and add 1 to obtain 13 n .
Repeat the process (which has been called “Half Or Triple Plus One” or HOTPO) indefinitely. The conjecture states that
no matter what number you start with you will always eventually reach 1.

Consider the following operation on an arbitrary positive integer: If the number is even divide it by two, if the
number is odd, triple it and add one. This is illustrated by example of taking numbers from 4 to 10 and the related sequence
is obtained:

• n = 4; related sequence is 4, 2, 1.
• n = 5, related sequence is 5, 16, 8, 4, 2, 1.
• n = 6, related sequence is 6, 3, 10, 5, 16, 8, 4, 2, 1.
• n = 7, related sequence is 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
• n = 8, related sequence is 8, 4, 2, 1.
• n = 9, related sequence is 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
• n = 10, related sequence is 10, 5, 16, 8, 4, 2, 1.

In simple modular arithmetic notation the Collatz conjecture can be represented as
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Note : Only powers of two converge to one quickly.

2.2  Various generalization of the Collatz Conjecture :
Several researchers have studied and generalized the Collatz conjecture. Some generalize by taking different

values for 2 as 3, 5, etc 9. Keith Matthew9 has studied for 3713 n  and so on. Some natural generalizations of the Collatz
Problem was done by Carnielli8. Lu Pei has given a generalization of 13 x  mapping in 9.

The generalization of the 13 n  mapping due to Lu Pei is given verbatim from9.
Consider the mapping ZZTd : . Let d  2. Then
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In case, 2=d  it gives the 13 n  mapping:
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This is a special case of a version of a mapping studied by Herbert Moller10 and is also an example of a relatively
prime mapping, in the language of Matthews and Watts, where 1=0m  and im  = d+1 for 1 i < d  and where we have the
inequality

dd
d ddmmm <1)(= 1

10
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if n  0 (mod 2),

if n  1 (mod 2),

if n  0 (mod 2).

if n  i (mod 2).

if n  0 (mod 2).

if n  1 (mod 2).
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So it seems certain that the sequence of  iterates

),(),(, 2 nTnTn dd

always eventually enters a cycle and that there are only finitely many such cycles.
Clearly nnTd =)(  for /2</2 dnd  . For d  = 3, 6 and 10, there appears to be no other cycles. By replacing

2 by d, it given the 13 x  conjecture will eventually enter a cycle. It is showed that the 13 n  collatz conjecture when n
is negative has finite cycles which terminates in 1  or 5  or 17  9.

Thus if for every non zero Zn  the 13 n  Collatz conjecture converges to 1,1}5,17,{   and the 13 n
collatz  conjecture converges to 1,1,5,17}{ .  The 13 n  conjecture is a special case of  the Lu Pei’s generalization of
the Collatz conjecture. The 13 n  conjecture is described here for clarity..

2.3  The 13 n  Conjecture :
The 13 n  conjecture which is akin to the  Collatz conjecture is proposed in this section. The 13 n  conjecture

is as follows:
Take any arbitrary positive integer n . If n  is even divide it by two and get /2n  if n  is odd multiply it by 3 and

subtract 1 and obtain 13 n , repeat this process indefinitely. We call this process as “Half Or Triple Minus One” or
HOTMO. The conjecture states that immaterial of which number you begin with, you will eventually reach 1 or 5 or 17.

2.3.1  Statement of the Problem/Conjecture :
On any arbitrary positive integer, consider the operation
    • If the number is even, divide it by two
    • Else triple it and subtract one
continue this process recursively. The 3 1n  conjecture is that this process which will eventually reach either 1 or 5 or 17,
regardless of which positive integer is selected at the beginning.

The smallest i  such that ia  = 1 or 5 or 17 is called as the total stopping time of n . The 13 n  conjecture asserts

that every n  has a well defined total stopping time i . If for some n  (any positive integer) such i  (total stopping time)
doesn’t exist, then n  has an infinite total stopping time then the conjecture is false. It can happen only because there is
some starting number which gives a sequence that does not contain 1, 5 or 17. Such a sequence may have a repeating cycle
that does not contain 1, 5 or 17 or it might increase without bounds. Till now such a sequence or number has not been
found.

In simple modular arithmetic notation the 13 n  conjecture can be represented as
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A sequence is formed by performing this operation repeatedly, it starts with any arbitrary positive integer and
takes the result each step as the input for the next.





 )(
=

1i
i af

n
a  (5)

)(= nfa i
i  that is ia  is the value of f  applied to n  recursively i  times; n  is the starting number and i

at the end of the sequence is called the total stopping time.

2.3.2  Examples :

if n  0 (mod 2),

if n  1 (mod 2).

if i  0 ,

if i  0.



The conjecture states that the sequence will reach 1, 5 or 17. The following repeated sequences / cycles happen
for 1, 5 or 17.

1.  n  = 1; the repeated sequence is 4, 2, 1.
2.  n  = 5; the repeated sequence is 14, 7, 20, 10, 5.
3.  n  = 17; the repeated sequence is 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17.
We will illustrate this conjecture by some examples using the 13 n  formula and taking numbers from 4 to 10.

It is tabulated in Table 1.
Table  1: Illustration of the 13 n  conjecture

n Sequence  i Ends in
4  4, 2, 1  3  1
5 5, 14, 7, 20, 10, 5  1  5
6 6, 3, 8, 4, 2, 1  6  1
7 7, 20, 10, 5  4 5
8 8, 4, 2, 1  4  1
9 9, 26, 13, 38, 19, 56, 28, 14, 7, 20, 10, 5  12  5
10 10, 5  2  5

Similar to 13 n  conjecture in 13 n  conjecture also the powers of 2, converge quickly. Figure 1 gives the

scatter plot that takes the starting number n  from 1 to 1000 along the x-axis and the total stopping number i  along the
y-axis. Depending on which number the sequence ends, the colour is given. If the sequence ends in 1, then blue colour is
given, if it ends in 5 then red colour is given and if it ends in 17 green colour is given.

The 13 n  conjecture creates a sequence that ends in 3 different numbers with the sequence having a repeated
sequence of
    1.  for any negative n  the sequence ends in 1 .
    2.  n  = 1; the repeated sequence is 4, 2, 1.
    3.  n  = 5; the repeated sequence is 14, 7, 20, 10, 5.
    4.  n  = 17; the repeated sequence is 50, 25, 74, 37, 110, 55, 164, 82, 41, 122, 61, 182, 91, 272, 136, 68, 34, 17.

The 13 n  conjecture and 13 n  conjecture are mirror functions. The pn 3  conjecture is defined in the next
section.

Figure  1:  The scatter plot of first 1000 numbers and their stopping times
3  The pn 3  conjecture

The pn 3  and pn 3  conjecture (or simply the p3  conjecture) is given in the following:
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if n  0 (mod 2),

if n  1 (mod 2).
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In simple modular arithmetic notation the pn 3  conjecture can be represented as
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and the pn 3  conjecture can be represented as
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It is clearly seen when p  = 1, we see the sequence converges to 1,0,1}5,17,{   and when 1= p , the

sequence converges to }1,0,1,5,17{ . When p  is 1, it is Collatz conjecture and when p  is 1  it is 13 n  conjecture.

We show for 53 n  the sequence converges to 7},23,187,401,0,1,5,195,25,85,{   for any n  in Z . For 53 n
we get ,85}1,0,1,5,255,19,23,187,407,{  . 53 n  and 53 n  act like mirror functions.

In Table 2 some pn 3  conjecture and their minimum cycle elements are listed.

It is conjectured that for every prime p  the pn3  sequence will result in a finite cycle and there are finite
number of such cycles.

Table  2. Illustration of the pn 3  conjecture

Sequence  Ends in

3n + 3 {51, 5, 3, 0, 1, 3}

3n  3 {3, 1, 0, 3.5, 51}

3n + 5 {85, 25, 5, 1, 0, 1, 5, 19, 23, 187, 407}

3n  5 {407, 187, 23, 19, 5, 1, 0, 1, 5, 25, 85}

3n  7 {119, 35, 7, 1, , 1, 5, 7}

3n  7 {7, 5, 1, 0, , 7, 35, 119}

3n  11 {187, 55, 19, 11, 3, 1, 0, 1, 11, 13}

3n  11 {13, 11, 1, 0, 1, 3, 11, 19, 55, 187}

3n  13 {221, 65, 13, 1, 0, 1, 13, 131, 211, 227, 251, 259, 283, 287, 319}

3n  13 {319, 287, 283, 259, 251, 227, 211, 131, 13, 1, 0, 1, 13, 65, 221}

4  Results and further study :
The proposed pn 3  conjecture is a new generalization of  the 13 n  conjecture or the Collatz conjecture.

Given  any starting number n , the conjecture states that the sequence will result in a finite cycle and there are finite number
of such cycles. Cycles related to the pn 3 , resulting hailstone numbers and parity sequence are left open for study..
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