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Abstract

Lie Classical Method is applied to find general transformations for two Generalized Burgers Equations. Also
transformations of Generalized Burgers Equation with time-dependent viscosity to another generalized Burgers equation
with constant viscosity has been done.
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Introduction
The Burgers equation for U(X,t) is*

u +uu —lu
t X 2 XX* (1)

Hopf 2 and Cole® have shown that the second order nonlinear “partial differential equation (PDE)” (1) may be
directly mapped to the second order linear PDE

o
¢t - _¢xx’ (2)
through the Cole-Hopf transformation

2
_ 1 d¢(x.t) t)

u(xt) = ®3)
p(xt)  ox

In 1983, Kawamota* related a new PDE to the original PDE to which the Lie’s Classical Method®®7 is applied
by the similarity transformations. After Clarkson and Kruskal have introduced “the direct method” to determine similarity
transformations for the NLPDEs, Sachdev and Mayil Vaganan® generalized the direct method to relate the solutions of two
nonlinear PDEs. Mayil Vaganan and Jeyalakshmi® transformed Generalized Burgers equations to the Burgers equation.
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Mayil Vaganan and Senthil Kumaran'® derived the Exact linearization and invariant solutions of the generalized Burgers

equation with linear damping and variable viscosity. Mayil Vaganan and Senthil Kumaran* also derived Exact linearization
and invariant solutions of a generalized Burgers equation with variable viscosity.

Transformations of Generalized Burgers Equations:
We shall demonstrate the successive applications of Lie classical Method results in the determination of general
similarity transformation. We shall explain this new concept now. Suppose that we apply Lie Classical Method to a PDE

L([u(,t)] = O to replace it by ODE P[f (z)] =0, where z = z(X,t) s the similarity variable. The similarity
transformation may be taken in the form u(X,t) = U (X,t, f (z)) Then the ODE P[f (z)] = O is transformed to a
PDE M[v(z,7)] =0 through a generalization of the similarity transformation, namely, u(x,t) =U (x,t,v(z,7))
where 7 = 7U(t). The key is that the newly introduced function 7(t) is to be determined in such a way that the ODE
P[f (z) 1=0is replaced by a PDE M[Vv(z,7)] =0, Note here that we simply replaced f (z) by v(z,7).

The crucial step is an another application of Lie Classical Method now to the PDE M [v(z,7)] =0, and this
may yield a more general similarity transformation V(z,7) =V (z,7,9(&)) ., where & = &(z,7) is the similarity
variable. To be precise, if either \/ is more general that |J or if é is more general than z, then

v(z,7) =V (z,7,9(&)) is certainly a more general similarity transformation. We study here two GBEs

u ju .

u,—au,, +(a+1)u ux+12—t=o, j=12,aeZ* @)

u -u,+nu""u +cu® =0, nezZ*,c>0 ®)
Now seek the following group of infinitesimal transformations

u =u+eU(t,x,u)+0(s?)

t" =t+eT(t,x,u) +O(e?)

X = x+eX(t, x,u)+0(s?) (6)
under which (4) is invariant. We then have
ju
2t?

{a(a +1)uety, +i}u LS YT T A

2t
— XU, — X, uu +(@+)u“lU, +U, - X Ju, -Tu, - X,u>-Tuu]
—S[U,, +(2U,, — X, U, =T, U, +(U,, —2X,,)ui —2T, u,u,
— X, Us =T, ulu - 2T,u, —2T,u, u,]-T,u?

uu X uu™ X u— Xt
a -u
—[Uu—2XX—3quX—Tuut](ut+(a+1)u ux+%j:0 @)

where we have replaced the highest derivative term U, using (4). Now equating the different powers U, u® ) UX2 and

u

X

« 1 UyeUy s U U, to zero, we get
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OC(OC +1)Ua71U - Xt +(O£+1)Uaxx _5(2Uxu - XXx) =0
iU _J_LiT +Ut+(a+l)uaux_wxx_£(uu_ZXX)ZO
2t 2t 2t

T,-2X,=0U, =T, =T,=X,=0
Solving equations (8) — (10) we get the infinitesimals as
U=A, X=-aA +b, T=-cAt
where A, bl are arbitrary constants and ja =1. The condition ja =1 requires that

a=]=1

In view of (12) the PDE under investigation (4) becomes

u,—ou,, +2uu, +2=p
2t

Burgers Equations

(8)

9)

(10)

(11)

(12)

(13)

The variant surface condition dx/X = dt/T = du/U to determine the similarity variable and the similarity form of

the solution is

Integration of (14) yield

_1/2
u=t"f(z), z=xt"
where 7 is the similarity variable. Putting (15) in (13) we get the ODE

S +£zf'—2 ff' =0
2
1
S, +=zf, —tf 1, —21ff, =0
2
Case 1: If 7 =t , then equation (16) becomes

. +at _tf —(a+1)f f, =0
2

(14)

(15)

(16)

(17)

(18)

To apply the Lie Classical again to (18) we assume that (18) is invariant under the group of infinitesimal transformations

f =f+eF(t,z,f), ' =t+eT(t,z,f), Z =z+&Z(t,z, 1)

The the determining equations are
%—a (o +1) F“F +1Z, +B—(a +1)f“}zz +5(2F, -2,)=0
~T +1T,-2tZ, =0

F, —tF. +(§—(a +1)f“JFZ =0, F, =0

(19)

(20)

(21)

(22)

(23)
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Solving equations (20)-(23) we get the infinitesimal as
F=0, Z=bt", T=hbt (24)

The invariant surface conditions to determine the similarity variables and the similarity form of the solution are

daf _ dz dt

0 - botfl/z - b_gt (25)

Integration of equations in (25) yields
2b, , 12
f=G(), S=z+——t77, (26)
b,
where é is the similarity variable. Putting (26) in (28) we get the following PDE for the similarity function G(é)
1 .

oG +E§G —(a+1)G*G =0 (27)

Case 2: If 7 =10gt , then equation (16) becomes
1

5fzz+EZfz_ft(a+1)fafZ=0 (28)
The determining equations are

%—a(a +1) FrF 42, +(§—(a +1)f “Jzz +8QF, -2,)=0 (29)

T,-2Z,=0 (30)

SFZZ—F+[§—(a+1)f“JfZ:O, F,=0 (1)

T,=T,=2,=0 (32)
Solving equations (29) to (35) we get the infinitesimals as

F=0, Z=be"? T=b (33)
The invariant surface conditions to determine the similarity variable and the similarity form of the solution are

df __dz _dt

0 pe'” b (34)
Integration of equations in (25) vyields

- _ . 2b, o
F=G() ¢=z+- "e (35)

5

Where & is the similarity variable. Putting (35) in (28) we get the following PDE for the similarity function G (&) :

G +%§G'—(a+1)G“G' =0 (36)
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It is remarkable that we are able to generalize the similarity variable from (15) to (35) . In factthe similarity transformation

of (26) now takes a more general form

f=G(E), &= w2 +2bﬁet/2 7)

5

Equations (27) and (36) are same. Now putting the transformation H = kG~ into equation (36) we arrive at the
Euler-Painlevé equation

HH' —(1+1/a)H'2+% HH' ——(“;1) k“H =0 (38)

Now we apply Lie Classical Method to the Equation

U, —u,+nu"u +cuP =0 (39)
Now we seek the following group of infinitesimal transformations

u =u+eU(t,x,u)+0(s?)

t"=t+eT(t,x,u) +O0(e?)

X = X+eX(t,x,u)+0(g?) (40)
under which (2.39) is invariant, Then

[n(n-1)u"?u, +cpuP*U +U, + (U, -T,)u, — X,u,

+ nunil[Ux + (Uu - Xx)ux _Txut - quf _Tuutux]_[uxx
+(U,, - X, Ju, -T U +U,, —2X,)uZ-2T, uu,

Xu X

— X, ud-T,,utu, —2T,u,, —2Tu,u,]- X u,u, —T,u?

_1
-[U,-2X,-3X,u, =T, uJu,+nu" u +cu®)=0 (41)

where we have replaced the highest derivative term U, using (39) - Now equating the different powersof U, ,U 0 Uy UX2

and U, ,U,U,,UU tozerowe get

xt

n(n-u"U - X, +nu"*X, —a(2U,, - X, )=0 (42)

cpu™ U +U, +nu"U, —aU , —cu’(U,-2X )=0 (43)

T,-2X,=0, U,=0 (44)

T,=T,=X,=0 (45)
Solving equations (42) — (45) we get the infinitesimal as

U= X=x T=o (46)

provided that @ =1/(1— p) and p = 2n—1. The invariant surface conditions to determine the similarity variables
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and the similarity form the solutions are

d_ax_at
oau/ls x to “n
Integration of equation in (47) yields
u=t“f(z,z(t)), z=xt"? (48)

where z and 7 are similarity variables. Putting (48) in (39) we get the following PDE for the similarity function
f(z,7)

f o+ % zf, —tf r,—nf " f, —cfP —of =0 (49)

Casel: If ¥ =1, then equation (49) becomes
1

fzz+%zfz—tft—nf” f —cfP—af =0 (50)
Again applying the Lie’s Classical method to (50) the following group of infinitesimal transformations

f =f+eF(t,z,f), t' =t+eT(t,z,f), 2 =z+eX(t,z,1) (51)
under which (50) is invariant. Then the determining equations are

Z n-1 Z n-1 —_—

E—n(n—l)f F+tZ, + E—nf Z,+2F,, -Z,,=0 (52)

-T+tT,-2tZ,=0 (53)

F,, —tF + (%— nf ”1JFZ — [ +cpf "]+ (of +cf P)(F, —2Z,)=0 (54)

FffZO, T,=T-=2,=0 (55)
Solving equations (55) — (52) we get the infinitesimals as

1

F=0, Z=hbt2, T=hbt (56)
The variant surface conditions to determine the similarity variables and the similarity form of the solution are

df __dz _dt

0 bt bt (37)
Integration of equations in (57) yields

f=6(5), ¢= z%’et”z o)

where & is the similarity variable. Putting (58) in (50) we get the following PDE for the similarity function G (&)
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G’ +%§G' —nG"'G -cGP -aG =0 (59)
Case 2: If 7 =logt , then equation (85) becomes
fzz+%zfz—ft—nf”lfz—cfp—af:0 (60)
The determining equations, when Lie Classical Method is applied for (60) are
%—n(n—l)f”zF+Zt+%Zz+2FZf -72,=0 (61)
T,-2Z,=0 (62)
F,-F +(§— nf ”1JFZ —[a +cpf PHF + (of +cf P)(F, -2Z,)=0 (63)
F,=T,+T,+Z,=0 (64)
Solving equations (61) to (64) we get the infinitesimals as
F=ke'u Z-= l_Tpkgzet +ce™, T= —ﬁe’t +k, (65)
o
The invariant surface conditions to determine the similarity variables and the similarity form of the solution are
df dz ot
ke' (1-p) k,ze™ _ﬁeft (66)
2 a
where k, = ¢, = 0. Integration of equations (66) yields
f =eG(&), &=1ze" (67)

where é is the similarity variable. Putting (67) in (60) we get the following PDE for the similarity function G(é) :

" 1+ (ChOR
G —(—Zp)G > G —cGP =0 (68)
Now putting the transformation f = G ®—1)/2 into equation (68) we arrive at the Euler - Painlevé equation

HH' 1+p H.z_c(l— p)+1+ Pu—o

69
p-1 2 2 (69)
Transformations of GBE with time —dependent viscosity:
The Generalized Burgers Equations with time dependent viscosity is given by
2
]
u+u"tu ==t" u, neZt, (70)

n
Equation (70) is invariant under a one parameter (&) group of infinitesimal transformations of the form

X" = x+e&(xt,u)+0(?),
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then

t" =t+en(x,t,u)+0(e?),

u” =u+ep(x,t,u)+0(e?),

_ nU72+nUX¢1 + nzu—2+nux¢1 _ nux(él)t - nutux(él)u - nu71+nuf(§1)u
- nu71+nux(§1)x —nu, (52 )t - nutz (52 )u h nu’“"utux(éz )”

_ nu—lJrnut (52 )x + n(¢1)t + nut(¢1)u + nU—1+”uX( 1)u + nU*1+n( 1)X

—1+g 71+g ,2+g
+2t nux(éz)uux,t +2t n(éz)xux,t +t nézux,x

—2+g
n 142 e
Sy (g, 2 ),

—1+g 71+g ,1+g 3
+1 nut(éz)uux,x_t n( 1)uux,x+t nux(él)u,u
2

—1+g 71+g 1+£
+2t nuf(él)x,u +t nux(él)x,x +t nutuf(éz)u,u

142

2
+ 2t ”utux(éz)xvu +t71+ﬁut (52 )x,x
2
_t71+ﬁuf( 1)u,u
142
n

—2t71+ﬁux(¢1)x,u —t (¢1)x,x = 0

123

(71)

The infinitesimals é, n and ¢ must be determined from the following over-determined system of linear partial differential

equations which are obtained from (71):

£ =0,

n, =0,

—ntun, —ntu"n, +ntug, +t*"un, , =0,
—Ntu"g + n’tu"g — ntu®é, —ntu*"E,
+ntutg, +t70E,  —2t7"u%g, , =0,

ntug, +ntu"g, —t*"ug, , =0,
TIx = 0’
2n—nn-2nté, +ntg, =0,

(72)
(73)

(74)

(75)
(76)
(77)
(78)
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¢,. =0. (79)
The solution of the system (72)-(79) is

5 = kl + kZX, (80)

n =k,nt, (81)

¢ = —k,u. (82)
The invariant surface condition is

Su,+nu, =4, (83)
whose auxiliary equations are

dx _dt _du

. T T T (84)

s n ¢
Substituting (80)-(82), with K, = 0, K, =1, equations (84) become

dx _dt _du

==, 85

X nt u (85)
Integration of the first two ratios in (85) gives

z(x,t) =t™" x. (86)

where 7z is the function of integration, the so called, similarity variable.

The similarity function, denoted here by f (Z) , Is determined from the second and third ratios of (85) again by
integration, viz.,

u(x,t) =t™" f(z2). (87)
Subsgtitution of the similarity transformation (86) and (87) into the GBE (70) results in the nonlinear second order ODE
g - - d
f'—nf"f +zf +f =0 =—. 88
dz (88)
Now wereplace f (z) by F(z,7) in(87), and consider the mapping
u(x,t) =t™ F(z,7), t=r1(t). (89)

The GBE (70) with variable viscosity, via the mapping (89) and(87), changes to another nonlinear partial
differential equation (NLPDE)

F,-nF"'F,+zF,+F =ncr F, (90)
where we have assumed that the function 7(t) is a solution of the first order ODE
t d—T =Cr. (91)
dt
Solving (91), we write 7 as (after setting the constant of integration ()
T(t) =t°. (92)

Thus the mapping that transforms the GBE (70) to yet another GBE (90) is given by (86), (89) and (92), viz.,
u(x,t) =t™" F(z,7), z(x,t)=t™""x, z(t)=t" (93)
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We remark that the NLPDE may be rewritten as a compatibility condition

d d

—G,.——¢G, =0,

4z 7 dr 2 (94)
Where G, = F, (95)

nctG, =F, - F" +zF. (96)

We may interpret (95)-(96) as a Béacklund transformations relating the solutions of the | -equation (90) and the PDE
satisfied by G(z,7), viz,,

G, -G +12G, =ncG,. (97)

If (95) is used to replace | in (93), then thus the mapping that transforms the GBE (70) to yet another GBE (90) is given
by (86), (89) and (92), viz.,

ux,t)=t™"" G, (z,7), z(x,t)=t™"x, ()=t (98)

The governing equation of G is again given by

G,-G"+12G, =ncr F, (99)
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