
A study on limit cycle and non-homoclinic orbits for FitzHugh-Nagumo System

ALI E.M. SAEED

1,2Department of Mathematics, Alzaem Alazhari University, Sudan
Corresponding Author Email:-  alikeria_math@yahoo.co.uk

http://dx.doi.org/10.22147/jusps-A/290404

Acceptance Date 7th March,  2017,          Online Publication Date 2nd April, 2017

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)

JOURNAL OF ULTRA SCIENTIST OF PHYSICAL SCIENCES
An International Open Free Access Peer Reviewed Research Journal of Mathematics

website:- www.ultrascientist.org

JUSPS-A  Vol. 29(4), 156-163   (2017).  Periodicity-Monthly

Section A

Estd. 1989

(Print) (Online)

Abstract

In this paper we investigate the complete FitzHugh-Nagumo System with 0I . Based on the result in1,2 we
discuss the non-existence of homoclinic orbits of the system. Further, we prove that the system has unique limit cycle
under the conditions of existence of homoclinic orbits.
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1  Introduction

In the present paper, we revisit the problem of existence and uniqueness of limit cycle. We give criterion for the

model (FitzHugh-Nagumo System) to have or not Homoclinic orbits with 0I .

Now, we consider the following Lienard system
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 (1.1)

The main part of this paper is devoted to explain the non-existence of Homoclinic orbits and uniqueness of  limit
cycles of FitzHugh-Nagumo System as given by the following differential system.
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We investigate the System with the parameters IBA ,,,,,   being not zeros. In particular, we study the system under

the case 1== BA  and 1,  where 1,0)( , .RI 
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This system has been extensively studied with particular emphasis on bifurcate limit cycles as well as in
modeling of certain phenomenon. From literature review, it is noticed that, most of the articles studied the system under

some parameters being zeros, for instance see4,5,6,7,9,10,11. Luo Ding  Jun in8  investigated the particular of case 0=)(1  ,

and proved the uniqueness of limit cycle. In12 there is a general analysis of the system for bifurcation of limit cycles from
Hopf-bifurcation. In13, we studied the system (1.2) with all parameters not zeros and proved the uniqueness of  limit
cycle. There are many articles in the field of limit cycles and homoclinic orbits for example see20,21,22.

The main focus of this present paper is to consider existence of homoclinic orbits of the system for two different
cases, and through these cases we discuss the existence and the uniqueness of  limit cycle. Note, that there are some results
for non-existence of homoclinic orbits in the case 0=1   e.g. see3.

In order to study the existence and non-existence of limit cycles and homoclinic orbits, we make change of

variables to get Lienard  type (1.1). Let xx   and yxy 



  where   is the root of the equilibrium equation

0.=1)()(1 23  Ixxx   Then system (1.2) becomes,
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The paper is organized as follows.
In section 2, we use some of the existing theorems and lemmas to obtain specific results.
In section 3, we investigate the existence and uniqueness of limit cycle system which has homoclinic orbits.
In section 4, we study the existence of homoclinic orbits and prove that system has no homoclinic orbits.

In section 5, the existence and uniqueness of critical point (0,0)O  and its global asymptotic stability are
discussed for the system (1.2).

A note on special case for 0=1   is given in section 6. The conclusion of this study is given in section 7.

2. Methods and Tools: Some useful Theorems and Lemmas :
For the existence of limit cycle let us consider the method of amplitude of limit cycles. Consider the following

system
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then the amplitude of limit cycles is given by
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 The positive solution of 0=)(a  is the amplitude of limit cycle of (2.1). Observe that ),(~ yxf  is an odd function of x
and an even function of ,y  whereas ),(~ yxg  is an even function of x  and an odd function of .y  For more details see20.

To prove the uniqueness of limit cycle we can apply the following theorem:

Theorem 2.113 : Let ),(xf )(1 xg  and )(xk  be continuous functions on ),( 12 xx , where  12 <0< xx .
Suppose the system (1.1) satisfies the following conditions:
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(1) xg1 0>)(x , ),( 12 xxx  and 0x .

(2) 0>)(xk  for all ),( 12 xxx , or 0=(0)k , 0>)(xk  for ).(0,,0)( 12 xxx 

(3) 
)(
)(

xg
xf  is increasing for )(0,,0)( 12 xxx  , and 0

)(
)(


xg
xf

 in a neighborhood of the origin.

Then the system (1.1) has at most one limit cycle in the strip

<<,<<|),(:= 12  yxxxyxD .

Moreover, the limit cycle is stable if it exists.

Here )()(=)( 1 xkxgxg  and f (x) = F ' (x)
For the existence of homoclinic orbits let us consider the following system
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
 (2.4)

Lemma 2.21 If there exists a homoclinic orbit in any neighborhood of the origin for (2.4), then 0=(0)=(0) cb  ,
and Det J(0, 0) = 0.

Therefore, by this lemma we have 0=(0)=(0) FF   see also Proposition 2.7 in1. Thus in the sequel we study
the system (1.3) through two different cases

1.  0;=)2(13 2  
2.  0=  and 0.= 

The first three focal values of system (1.3) are (see Lemma 3.3.1 in8);
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such that ).1)2(1(3= 2


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3  The uniqueness of limit cycle :
In this section, we investigate the uniqueness of limit cycle for the system (1.3) under above two cases as given

in section 2.

Case:1 0=)2(13 2  
Therefore system (1.3) becomes,
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 We note that 0=(0)F  , 0.=(0)g  The other roots of 0=)(xF  and 0=)(xg  respectively are

)),(1(3=  x  (3.2)
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Therefore the system has unique singular point for 0,<1)2(14(3))(13 22
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   the system (3.1) has three singular points.

Since we consider the system in the case O  as anti-saddle then we have 0,>1


  0<)13()(1 2
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
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deduces that the system (3.1) has (0,0)O  as unique critical point. The graphs of )(xF  and )(xg  in Figure 1  gives better
understanding.

Let us apply equation (2.2) to get the conditions of the existence of limit cycles:
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 If 0>)1(


   then the system has (0,0)O  as saddle point therefore no limit cycle. In the case of 0<)1(


   and the value

0,>)13())(12(3 2


   one limit cycle appear from Hopf-bifurcation. Thus from above discussion we have the

following theorem.

Theorem 3.1 For 0<)(13    and 0,>)13())(12(3 2


   the system (3.1) has unique limit cycle.

Proof: Now, we apply Theorem 2.1. Let g1(x) = x, since  < 0 and (32  2(1+)+ 1


) > 0  then

we have ))(1(3[=)( 23 xxxK    +
1)2(1(3 2
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 increasing we

have ( f x
g x

( )
( )1

)' 0>3=  for Rx  Thus, from Lemma 1.1 the system (2.3) with 0>b  and 0>c  has at most one

stable limit cycle.
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Case : 2 0=  and 0= 
In this case equation (1.3) becomes,
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Here 0,<=    and since we assume that O  is anti-saddle then 0.>)1(


   The discriminate of )(xg  is
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   suppose that 0  then we find that 3  contradiction since 0.<  Thus )(xg  has unique

critical point is (0,0).O  If we apply the equation (2.2), and as in the previous case, we find that 0>)(1   is the condition
of existence of limit cycle.
The focal values of (3.5) are
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In a similar way one can obtain Theorem 3.1 with following result:

Theorem 3.2 For 0>)(1   and 0>)13()2(1 2


   the system (3.5) has unique limit cycle.

4  The existence of homoclinic orbits :
In this section we study the existence of  homoclinic orbit through the above two cases as given in section  2.  The

result can be obtained through the following lemma:
Lemma 4.12 Suppose there exists a 0>  such that 0>)(xF  for .|<<|0 x  If
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Let

2
12

=
2 


k

where ))(1(3=    and k  is a constant such that

,1}
3
2{<<0

2


mink

so, we have .<<0   Since 0,>1)2(13 2


   we obtain

4
1>

)(
>

)(
=

)(
>

)(
)(

)(
1

020


















 

xx
k

xx

d
xx

d
F
g

xF
xx

 (4.2)

160 A study on limit cycle and---FitzHugh-Nagumo System.



for .<<0   Thus, we deduced that the system (1.3) with 0=)2(13 2    has no homoclinic orbits.
As a proof of this lemma we can get the following result
Lemma 4.2  For 0=  and 0=   the system (1.3) has no homoclinic orbits.
Remark 4.3 It is important to point out that, we consider the following two different cases such as 0>)(13  

and 0<)(1   in which the limit cycle does not exists.

5  Non-existence of limit cycle :
In this section we investigate two different cases of non-existence of limit cycle and global asymptotic stability

of the critical point (0,0)O  which mainly depends on the above two sections.
Definition  The equilibrium point Ox =  is asymptotically stable iff:
1.  Ox =  is stable equilibrium point;

2.  00 t )( 0t  s.t <|)(| 0tx Oxlim =|)(|  

Now, we apply the focal values to the systems under the cases of non-existence of homoclinic orbits.

Consider the cases 0=)2(13 2    and 0,<)1(


   and from equation (3.4) if

0,<)13())(12(3 2


   then no change of stability so no limit cycle and (0,0)O  is stable focus.  Thus from this

discussion and Lemma 4.1, we deduce that the unique critical point (0,0)O  is globally asymptotically stable.

Consider the cases 0=  and 0=   and 0.<)1(


 

As  before and by using equation (3.6) and Lemma 4.2, we obtain that for 0<)1(


   and 0<)13()2(1 2


 

the unique critical point (0,0)O  is globally asymptotically stable.

Remark 5.1 Consider 0<)13())(12(3 2


   as condition 1 ),( 1c

0<)13()2(1 2


   as condition 2 ),( 2c  then we get the following result

Theorem 5.2 Assume the condition 1c  or condition 2c  is satisfied. Then the equilibrium point (0,0)O  of

system (3.1) or of system (3.5) is globally asymptotically stable respectively see.

6  A  Note on Special Case 0=1  :
Consider system (3.1), and if we apply equations (2.2) and (3.4) then we have the following lemma

Lemma 6.1 For 0<  and 0,>)1(6 2


   then system (3.1) has unique limit cycle. If 0<  and

0,<)1(6 2


   then the equilibrium point (0,0)O  of system (3.1) is globally asymptotically stable

For system (3.5), and if 0>)1(1


  then the system has (0,0)O  as a saddle, and for 0<)1(1


  we have the

following result 0>)]1(1[=)()( 24


 xxxgxF  so no limit cycle. Thus from equation (3.6) we have:

Lemma 6.2 For 0<)1(1


  the equilibrium point (0,0)O  of system (3.5) is globally asymptotically stable.

For more details see [3] and [8].
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7  Conclusion

The main goal of this paper is to investigate the complete FitzHugh-Nagumo System with 0I  including the
non- existence of  homoclinic orbits of the system. Further, it is proved that the system has unique limit cycle under certain
conditions of existence of homoclinic orbits.
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