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Abstract

The aim of this research paper is to evaluate a double integral involving generalized I-function of two variables.
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1. Introduction

The generalized I–function of two variables introduced by Goyal and Agrawal1, will be defined and represented
as follows:
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Abstract

The Lebesgue integral is noted for its powerful convergence theorems - the Monotone Con-
vergence Theorem (MCT) and Dominated Convergence Theorem (DCT). In 5 and 8, these
two convergence theorems were proved for the Henstock integral. Nakanishi in 9 and Lee and
Yyborny in 8 consider yet another but more powerful convergence theorem, called the Con-
trolled Convergence Theorem (CCT), that includes the monotone and dominated convergence
theorems. Paredes and Chew in 11 studied a controlled convergence theorem for Banach space
valued HL-integrals. Generalized absolute continuity (ACG) plays a very significant role in
CCT. On the other hand, it is known that if a function satisfies a Lipschitz condition then it is
ACG. It is the objective of this study to investigate some Lipschitz condition in the Controlled
Convergence Theorem.

2010 Mathematics Subject Classification: 26A24, 26A06, 26A39, 26A42

Keywords: uniform δ-Lipschitz, UACG∗, Controlled Convergence Theorem

1 Introduction

One of the well-known, if not the strongest, convergence theorem of the Henstock-Kurzweil
integral is the Controlled Convergence Theorem (CCT). In 2, Kurzweil and Jarǹık give a version
of this theorem for Perron-type integrals. For real-valued functions, this convergence theorem
was considered by Lee and Chew in their papers 6 and 7 and in the books 5 and 8. A version
of CCT for functions taking values in fuzzy numbers was also considered in 3 and 13. CCT for
Banach-valued functions defined on a compact interval [a, b] ⊆ R and strong variational Banach-
valued multiple integrals were studied by Paredes, et.al. in 11 and 12, respectively. Several versions
of CCT were also given by Nakanishi in 9, S. Pal, D.K. Ganguly and L.P. Yee in 10, and Wang in 14.
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Controlled convergence theorem is formulated using a special version of “generalized continuity”
called ACG∗. On the other hand, Lipschitz conditions, which are simpler but stronger conditions
compared to continuity, are constantly used in the theory of differential equations. In this paper,
we give some relationships between uniform ACG∗ and concepts satisfying some uniform Lipschitz
conditions. In conclusion, a version of the controlled convergence theorem is formulated.

2 Basic Concepts

A gauge on [a, b] is a positive function δ(x) on [a, b]. A Henstock δ-fine division of [a, b] is a
finite collection D = {([xi−1, xi], ξi)}ni=1 of non-overlapping interval-point pairs such that for all
i = 1, 2, . . . , n

ξi ∈ [xi−1, xi] ⊆ (ξi − δ(ξi), ξi + δ(ξi)) and
n⋃
i=1

[xi−1, xi] = [a, b].

We say that D = {([xi−1, xi], ξi)}ni=1 is a McShane δ-fine division of [a, b] if for all i = 1, 2, . . . , n

[xi−1, xi] ⊆ (ξi − δ(ξi), ξi + δ(ξi)), ξi ∈ [a, b], and
n⋃
i=1

[xi−1, xi] = [a, b].

This means that every Henstock δ-fine divisions of [a, b] are McShane δ-fine.

Lemma 2.1 (Cousin’s Lemma) 8 If δ(x) > 0 is a gauge on [a, b], then there exists a δ-fine
division of [a, b].

Definition 2.2 8A function f : [a, b]→ R is said to be Henstock integrable to A on [a, b] if for each
ε > 0, there exists a gauge δ(ξ) > 0 on [a, b] such that whenever D = {([u, v], ξ)} is a δ-fine division
of [a, b], we have ∣∣∣(D)

∑
f(ξ)(v − u)−A

∣∣∣ < ε.

If f : [a, b]→ R is Henstock integrable to A, we write

A = (H)

∫ b

a
f(x)dx,

and call A as the Henstock integral of f on [a, b]. The function F : [a, b]→ R defined by

F (x) = (H)

∫ x

a
f(t) dt.

is called a primitive of f on [a, b].

Definition 2.3 1 Let E ⊆ R. A function F : E → R is said to satisfy a Lipschitz condition on E
or simply Lipschitz on E if there exists L > 0 such that

|F (y)− F (x)| ≤ L · |y − x|

for each x, y ∈ E. The number L is called a Lipschitz constant.
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3 Uniform Lipschitz

Definition 3.1 A sequence 〈Fn〉∞n=1 of real-valued functions defined on [a, b] is said to be uni-
formly Lipschitz on [a, b] if there exists L > 0 such that for each n ∈ N,

|Fn(v)− Fn(u)| ≤ L · |v − u|, for each u, v ∈ [a, b].

Theorem 3.2 Let 〈Fn〉∞n=1 be a sequence of functions defined on [a, b]. Then the following are
equivalent:

(i) 〈Fn〉∞n=1 is uniformly Lipschitz on [a, b].

(ii) For each x ∈ [a, b], there exists L(x) > 0 and δ(x) > 0 such that for every McShane δ-fine
interval-point pair ([u, v], x) and for each n ∈ N, we have∣∣Fn(v)− Fn(u)

∣∣ ≤ L(x) · |v − u|.

Proof : (i)⇒ (ii): There exists L > 0 such that for each u, v ∈ [a, b] and for all n ∈ N, we have∣∣Fn(v)− Fn(u)
∣∣ ≤ L · |v − u|.

For each x ∈ [a, b], let L(x) = L > 0. Consider the following cases:

Case 1: Suppose that x = a (or x = b). Choose δ(x) = 1
2(b − a). Let ([u, v], x) be a McShane

δ-fine interval-point pair with [u, v] ⊆ [a, b]. Then for all n ∈ N,∣∣Fn(v)− Fn(u)
∣∣ ≤ L · |v − u| = L(x) · |v − u|.

Case 2: If x ∈ (a, b), then choose δ(x) = min{12 |b − x|,
1
2 |x − a|}. Let ([u, v], x) be a McShane

δ-fine interval-point pair with [u, v] ⊆ [a, b]. Then for all n ∈ N,∣∣Fn(v)− Fn(u)
∣∣ ≤ L · |v − u| = L(x) · |v − u|.

(ii) ⇒ (i): By (ii), δ(x) is a gauge on [a, b]. By Cousin’s Lemma, there exists a McShane δ-fine
division D = {([si, ti], xi)}ri=1 of [a, b]. Let L = max{L(xi) : i = 1, 2, · · · , r} > 0. For each
i = 1, 2, . . . , r and for all n ∈ N,∣∣Fn(ti)− Fn(si)

∣∣ ≤ L(xi) · |ti − si| ≤ L · |ti − si|.

Let x, y ∈ [a, b] with x < y. Then there exists 1 ≤ j ≤ k ≤ r such that x ∈ [sj , tj ] and y ∈ [sk, tk].
Let P be the McShane δ-fine partial division{

([x, tj ], xj), ([sj+1, tj+1], xj+1), . . . , ([sk−1, tk−1], xk−1), ([sk, y], xk)
}
.

Relabel P by P = {([sα, tα], ξα)}qα=1. Then [x, y] =

q⋃
α=1

[sα, tα]. Hence, for all n ∈ N,

∣∣Fn(y)− Fn(x)
∣∣ =

∣∣∣∣∣
q∑

α=1

[
Fn(tα)− Fn(sα)

]∣∣∣∣∣ ≤
q∑

α=1

∣∣∣Fn(tα)− Fn(sα)
∣∣∣

≤
q∑

α=1

(
L · |tα − sα|

)
= L ·

q∑
α=1

|tα − sα| = L · |y − x|.

This shows that F is uniformly Lipschitz on [a, b]. �
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Definition 3.3 Let ∅ 6= X ⊆ [a, b]. A sequence 〈Fn〉∞n=1 of functions on [a, b] is said to satisfy a
uniformly δ-Lipschitz condition on X if there exist L > 0 and δ(x) > 0 on X such that for any
δ-fine interval-point pair ([u, v], x) with x ∈ X, we have

|Fn(v)− Fn(u)| ≤ L · |v − u|, for all n ∈ N.

Theorem 3.4 Let 〈Fn〉∞n=1 be a sequence of functions on [a, b]. If there exists a sequence 〈Xm〉∞m=1

of non-empty subsets of [a, b] such that [a, b] =
∞⋃
m=1

Xm and 〈Fn〉∞n=1 is uniformly δ-Lipschitz on

each Xm, then 〈Fn〉∞n=1 is uniformly Lipschitz on [a, b].

Proof : For all x ∈ [a, b], there exists m0 ∈ N such that x ∈ Xm0 . Since 〈Fn〉∞n=1 is uniformly
δ-Lipschitz on each Xm0 , there exist Lm0 > 0 and δm0(x) > 0 on Xm0 such that for any δm0-fine
interval-point pair ([u, v], x) with x ∈ Xm0 , we have

|Fn(v)− Fn(u)| ≤ Lm0 · |v − u|, for all n ∈ N.

Choose L(x) = Lm0 and δ(x) = δm0(x), for all x ∈ Xm0 . Let ([u, v], x) be δ-fine. Then

|Fn(v)− Fn(u)| ≤ Lm0 · |v − u| = L(x) · |v − u|, for all n ∈ N.

Thus, by Theorem 3.2, 〈Fn〉∞n=1 is uniformly Lipschitz on [a, b]. �

Definition 3.5 5 Let X ⊆ [a, b]. A sequence 〈Fn〉∞n=1 of functions defined on [a, b] is said to be
UAC∗(X) if for every ε > 0 there exists η > 0, independent of n, such that for any partial partition
P = {[ak, bk]} of [a, b] with ak, bk ∈ X,

(P )
∑
|bk − ak| < η implies (P )

∑
ω(Fn; [ak, bk]) < ε, for all n,

where ω(Fn; [ak, bk]) is the oscillation of Fn on [ak, bk]. The sequence 〈Fn〉∞n=1 is UACG∗ on [a, b]
if [a, b] is a union of Xk, k = 1, 2, . . ., such that 〈Fn〉∞n=1 is UAC∗(Xk) for each k.

Theorem 3.6 Let 〈Fn〉∞n=1 be a sequence of functions on [a, b]. If there exists a sequence 〈Xm〉∞m=1

of non-empty subsets of [a, b] such that [a, b] =

∞⋃
m=1

Xm and 〈Fn〉∞n=1 is uniformly δ-Lipschitz on

each Xm, then 〈Fn〉∞n=1 is UACG∗ on [a, b].

Proof : Choose any Xm and fix this (but arbitrary). By hypothesis, there exist L > 0 and δ(x) > 0
on Xm such that for any Henstock δ-fine interval-point pair ([u, v], x) with x ∈ Xm, we have

|Fn(v)− Fn(u)| ≤ L · |v − u|, for all n.

For each i, j ∈ N , let

Xm,i,j =
{
x ∈ Xm : 1

i+1 < δ(x) ≤ 1
i , x ∈ [a+ j−1

i+1 , a+ j
i+1)

}
.

Then {Xm,i,j : i, j ∈ N} is pairwise-disjoint and Xm =
⋃
i,j

Xm,i,j .
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Now, fix Xm,i,j . We will show that 〈Fn〉∞n=1 is UAC∗(Xm,i,j). So let ε > 0. Take η =
ε

L
> 0.

Let P = {[ak, bk]} be a partial partition of [a, b] with ak, bk ∈ Xm,i,j and∑
k

|bk − ak| < η.

Then, for every k,

|bk − ak| ≤
(
a+ j

i+1

)
−
(
a+ j−1

i+1

)
= 1

i+1 < δ(ak).

This implies that ([ak, bk], ak) is δ-fine for all k. Thus, for each k

|Fn(bk)− Fn(ak)| ≤ L · |bk − ak|, for all n.

Moreover, if ak ≤ uk ≤ vk ≤ bk, then ([ak, uk], ak) and ([vk, bk], bk) are δ-fine. So, for all n

|Fn(uk)− Fn(ak)| ≤ L · |uk − ak| ≤ L · |bk − ak|

and
|Fn(bk)− Fn(vk)| ≤ L · |bk − vk| ≤ L · |bk − ak|.

Hence, for all n

|Fn(vk)− Fn(uk)| ≤ |Fn(vk)− Fn(bk)|+ |Fn(bk)− Fn(ak)|+ |Fn(ak)− Fn(uk)|
≤ 3L · |bk − ak|.

For each k, it follows that

ω(Fn; [ak, bk]) = sup
{
|Fn(vk)− Fn(uk)| : uk, vk ∈ [ak, bk]

}
≤ 3L · |bk − ak|,

for all n. Thus, for all n ∈ N,∑
k

ω(Fn; [ak, bk]) ≤ 3L
∑
k

|bk − ak| < 3L · η = ε.

This shows that 〈Fn〉∞n=1 is UAC∗(Xm,i,j) for all i, j ∈ N. Since [a, b] is countable union of Xm,i,j ,
it follows that 〈Fn〉∞n=1 is UACG∗ on [a, b]. �

4 Controlled Convergence Theorem

In this section, we utilize the concept of uniform Lipschitz to investigate the Controlled Convergence
Theorem. The following result is known as the Controlled Convergence Theorem.

Theorem 4.1 (Controlled Convergence Theorem) 8 Let 〈fn〉∞n=1 be a sequence of Henstock
integrable functions on [a, b] with corresponding primitives Fn and 〈fn〉∞n=1 converges to f pointwisely
on [a, b]. If 〈Fn〉∞n=1 is UACG∗, then f is Henstock integrable on [a, b] and

lim
n→∞

(H)

∫ b

a
fn = (H)

∫ b

a
f.
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We present the following “stronger” version of the Controlled Convergence Theorem.

Theorem 4.2 (Controlled Convergence Theorem Version I) Let 〈fn〉∞n=1 be a sequence of
Henstock integrable functions on [a, b] with corresponding primitives Fn and 〈fn〉∞n=1 converges to f
pointwisely on [a, b]. Suppose there exists a sequence 〈Xm〉∞m=1 of non-empty subsets of [a, b] such
that the following conditions are satisfied:

(a) [a, b] =
∞⋃
m=1

Xm and

(b) 〈Fn〉∞n=1 is uniformly δ-Lipschitz on each Xm.

Then f is Henstock integrable and

lim
n→∞

(H)

∫ b

a
fn = (H)

∫ b

a
f.

Proof : By Theorem 3.6, 〈Fn〉∞n=1 is UACG∗ on [a, b]. The conclusion follows from the Controlled
Convergence Theorem. �

Theorem 4.3 (Controlled Convergence Theorem Version II) Let 〈fn〉∞n=1 be a sequence of
Henstock integrable functions on [a, b] with corresponding primitives Fn and 〈fn〉∞n=1 converges point-
wisely to f on [a, b]. Suppose there exists subsets X0 and Xm (m ≥ 1) of [a, b] such that the following
conditions are satisfied:

(a) [a, b]rX0 =
∞⋃
m=1

Xm,

(b) 〈Fn〉∞n=1 is UAC∗(X0), and

(c) 〈Fn〉∞n=1 is uniformly δ-Lipschitz on each Xm, for m ≥ 1.

Then f is Henstock integrable and

lim
n→∞

(H)

∫ b

a
fn = (H)

∫ b

a
f.

Proof : Since 〈Fn〉∞n=1 is UAC∗(X0) and

[a, b] =

∞⋃
m=0

Xm,

it follows from Theorem 3.6 that 〈Fn〉∞n=1 is UACG∗ on [a, b]. Therefore, by Controlled Convergence
Theorem, f is Henstock integrable and

lim
n→∞

(H)

∫ b

a
fn = (H)

∫ b

a
f. �
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