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Abstract

Let ))(),((= GEGVG  be an undirected connected graph and let X  be a subset of )(GV . Furthermore,

let )(XI  and )(XB  denote the set of isolates and the boundary set of X , respectively. The inner boundary number

of X, denoted by )(Xi  is )}.(=\)\(|:{|max=)( XBYYXBandXYYXi   The outer boundary number

of X , denoted by )(Xo  is .|][\)(=|)( XNGVXo  The I -integral of X  is  I |)(|)()(=)( XIXXX oi  

and the I -integral of G  is  I {min=)(G  
I )}(:)( GVXX
I

 .  In this paper, we determine the I -integral of graphs resulting
from some binary operations such as the join, corona, composition, and cartesian product of graphs.

Key words: I -integral, isolates, boundary
Mathematics Subject Classification: 05C69

1  Introduction

Consider a network of locations. We may represent it as a graph. Suppose we want to build production facilities
in some of these locations. Each of these production facilities can stand on its own but it has better production if connected
to another facility. These production facilities can distribute their products only to locations directly connected to it. We
further assume that the gain we may have in having one location for distribution is equal to the gain of having a production
facility connected to another facility or the gain of having one less “unneeded” production facility. Given a set of locations
for your production facilities you may count the locations that are not connected to any production facility, the number of
“unneeded” facilities, and the number of isolated facilities. What we want is the minimum of the sum of these numbers. For
example, consider the network of locations represented by a graph G  below..
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If you put four production facilities at locations a , c , h , and e , the locations that are not connected to any

production facility are j , l , f , and g . The production facility located at e  is an isolated facility because it is not

connected to any other facility.  The production facility located at h  is an “unneeded” facility because its set of locations
for product distribution, which is just location i , is already covered by the production facility in c . Thus, the number of

locations that are not connected to any production facility is 4 , the number of isolated facilities is 1, and the number of

“unneeded” facilities is 1. Summing up these numbers we have 6 , and we associate this number as the I -integral of the

set of locations },,,{= ehcaX . We may consider all other set of locations, and the minimum of the I -integral of all

these set of locations is what we mean as the I -integral of G . These concepts were already defined precisely in3. For the
sake of completeness, we will give it again in the next section.

2  Preliminaries :

Let G  be an undirected connected graph and let X  be a subset of )(GV . We first recall the following
definitions.

The set )(\=)( XNXXI  denotes the set of isolates in X  and XXNXB \)(=)(  denotes the

boundary of X , where })(:)({=)( XxsomeforGEyxGVyXN   is the set of neighbors of X . Let

XXNXN )(=][ . A set )(GVS   is a dominating set of G  if )(=][ GVSN . The The domination

number )(G  of G  is the minimum cardinality of a dominating set. If S  is a dominating set with )(|=| GS  , then

we call S  a minimum dominating set of G  or a  -set in G . If )(=)( GVSN , then we say that S  is a total

dominating set of G . The total domination number )(Gt  of G  is the minimum cardinality of a total dominating set. If

S  is a total dominating set with )(|=| GS t , then we call S  a minimum total dominating set of G  or a t -set in G .

Definition 2.1  The inner boundary number of X , denoted by )(Xi  is

|:{|max=)( XYYXi    and  )}.(=\)\( XBYYXB

The outer boundary number of X , denoted by )(Xo  is

.|][\)(=|)( XNGVXo

The I -integral of X  is  I |)(|)()(=)( XIXXX oi    and the I -integral of G  is

 
I min=)(G  I .)(:)( GVXX  .

We will call XY   such that |=|)( YXi  an inner boundary set of X  and the set ][\)( XNGV  the outer
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boundary set of X .

Remark 2.2 :  It is easy to show that the equation )(=\)\( XBYYXB  is equivalent to XXNXYXN \)(=\)\( .

Observe that for a connected graph G  of order 2n , if we take =X , nGVXo |=)(=|)(  and

0|=)(=|)( XIXi . Thus,  
I nX =)( . If )(= GVX , then 0|=)(=|)( XIXo . Note that

=)(\)(=\)(=)( GVGVXXNXB  and =\)\( XXXB . Thus, nGVXi |=)(=|)( . Thus,

 
I nX =)( .

Let )(GVX   and XY  . If =Y , then )(=\)\( XBYYXB . If XY = , then, since

)(GVX  , there exists a )(GVy  not in X  and since G  is connected, there exists a path connecting y  to X .

The vertex in this path not in X  but directly connected to X  is an element of )(XN . Hence,

)(=\)( XBXXN . But =\)\( XXXB . Thus, 1||)(0  XXi .

We state it as a remark.

Remark 2.3  For a connected graph G  of order 2n  and =X  or )(= GVX ,  I nX =)( . Moreover,

if )(GVX  , then 1||)(0  XXi .

For the graph G  of order 1,  say }{=)( aGV , the set )(GVX   is either   or }{a . If =X , then

0|=)(=|)( XIXi  and 1=)(Xo . If }{= aX , then 1|=)(| XI  and 0=)(Xo . Moreover, you may

take }{= aY  and )(==\)\( XBYYXB  . Thus, 1=})({ai  and  I 2=})({a . Hence,  I (G)= 
I 1=)( .

For the connected graph G  of order 2 , say },{=)( baGV , the set )(GVX   is either  , }{a , }{b ,

or )(GV . By Remark 2.3,  I =)(  
I 2=))(( GV . Let }{= aX  or }{b . Then, 0=)(Xo  and 1|=)(| XI .

Moreover, by the second part of Remark 2.3, 0=)(Xi . Hence,  I 1=)(X  and  I 1=)(G . We thus have the following

remark.

Remark 2.4 :  For the graph G  of order 1 or 2 ,  I 1=)(G .

The following results are from 3. The first theorem shows the bounds for the I -integral of a graph and the

second asserts the existence of a graph with I -integral equal to a natural number n . To see the construction of such a
graph, we reproduce the proof here.

We first recall that the degree of a vertex  v  of a graph G  is given by |})({=|)( vNvdeg  and the degree of

G , denoted by )(G , is )}(:)({max GVvvdeg  .

Theorem 2.5 3  For any connected graph G  of order 3n ,

0  
I ).()( GnG 

Theorem 2.63 For any natural number n , there exists a connected graph G  with  I nG
I

=)( .

Proof. Let 1n . Start with the path ],,[= 1
3

1
2

1
13 vvvP . For vertices 1

1v  and 1
3v  connect additional n  vertices.



Let this new graph be G . Make n  copies of G , labeling the vertices corresponding to 1
3

1
2

1
1 ,, vvv  as 2

3
2
2

2
1 ,, vvv ,

3
3

3
2

3
1 ,, vvv ,..., nnn vvv 321 ,, . For 11,2,...,= nk , connect one additional vertex connected to kv3  to one additional

vertex connected to 1
1
kv . Let this new connected graph be nG . We are to show that  I nGn =)( .

Let 1X  be the vertices },,...,,,,{ 31
2
3

2
1

1
3

1
1

nn vvvvvv  and 2X  be the vertices },...,,,{ 2
3
2

2
2

1
2

nvvvv . Let

21= XXX  . Then, X  is a total dominating set and thus we have 0=)(Xo  and =)(XI . Now, consider

that and2 XX   and )(=\)\(and 22 XBXXXB . It can be easily seen that 2X  is the largest subset of X  having that

property, and hence, nXi =)( . Hence,  I nnXIXXX ioI
=00|=)(|)()(=)(   .

Let )( nGVY   such that XY  . If YX  , then Y  is also a total dominating set and hence 0=)(Yo

and =)(YI  and nYi )( . Hence,  I nY )( . If X  is not a subset of Y , then at least a vertex in 1X  or in 2X

is not in Y . If a vertex in 1X  is not in Y , then nYo )( . If YX 1  and 22 Xvk   is not in Y, then kv1  and kv3

which are vertices in 1X  are isolates. If we let S  be the rest of 2X  in Y , we have |=|)( SYi . Hence,

nXYIYi |=||)(|)( 2 . Thus,  I nY )( . Therefore,  I nG =)( , by the minimality of  I )(G
I

.  �

The following are rectifications of some of the results from 3. The next theorem and its corollary rectify Theorem
2.2 and Corollary 2.3 in3.

Theorem 2.7 : Let G  be a connected graph of order 3n .

Then,  I 1)()(  GG t .

Proof. Let )(GVX   such that )(=)( GVXN  and |=|)( XGt . Then, 0|=][\)(=|)( XNGVXo

and =)(XI . Let XY   such that )(=\)\( XBYYXB . Observe that Y  cannot be equal to X , since

=)\( XXB . Hence, 1)(=1||||0  GXY t .

Thus,

 
I )(G
I

 
I |)(|)()(=)( XIXXX ioI

 

       1.)(0||0=  GY t �

Corollary 2.8 Let G  be a connected graph of order 3n .

Then,  I 1)()(  nGG II
.

The notation )(GI  is for the I -differential of a graph G , defined as )}(:)({max=)( GVXXG II  ,

where |)(||)(=|)( XIXBXI  . The author had worked on this parameter with Canoy in4. This work had

inspired the author to develop the I -integral of a graph.
The next theorem rectifies Theorem 2.5 in3.

Theorem 2.9  Let G  be a connected graph of order 3n . Then,  I 0=)(G  if and only if G  has a total
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dominating set S  with the property that for all Sx , SxN \})({  SxSN \}){\(Ú .

Proof. Suppose that  I 0=)(G
I

. Then, there exists )(GVS   such that 0=)(=)( SS io   and

=)(SI .  Since 0=)(So , we have )(=][ GVSN . Moreover, since S  has no isolates, )(SNS   and

thus, )(=)(=][ SNSSNSN  , that is, )(=)( GVSN . Thus, S  is a total dominating set.

Now, suppose that there exists a vertex Sx  such that SxSNSxN \}){\(\})({  . That is, all

neighbors of x  not in S  are also connected to the other members of S . Thus, \}){\(=)(=\)( SxSNSBSSN

}{\}){\(= xxSB .  Hence, 1)( Si , a contradiction. Therefore, for all Sx , SxN \})({  SxSN \}){\(Ú .

Conversely, if S  is a total dominating set of G , then S  and 0|=)(=|)( SISo . Since for all

Sx , SxN \})({  SxSN \}){\(Ú , then )(GVS   and for every Sx  there is at least a neighbor of x  not

in S  and not connected to the other members of S . Hence, )(=\)(}{\}){\(=\}){\( SBSSNxxSBSxSN  .

Thus, for SY  , )(\)\( SBYYSB  . Hence, 0=)(Si . Consequently, ,  I 0=)(G .  �

3 Results

Remark 3.1 :  As discussed in the introduction and in view of Theorem 2.5, a desirable network of locations

(a graph G ), based on our problem, is a graph G  with  I 0=)(G . We will see in this section that it is the case for some

graphs under binary operations.

We will first obtain the I -integral of a complete graph.

Proposition 3.2  For the complete graph nK ,  I 1=)( nK .

Proof. By Remark 2.4,  I 1=)( nK , for 1,2=n . Let 3n  and )( nKVv . Take Take }{= vX . Then,

0|=)(\)(|=|][\)(=|)( GVGVXNGVXo  and 1|=)(| XI . Moreover, by the second part of Remark 2.3,

0=)(Xi . Hence,  I 1=)(X . If =X  or )( nKV , then by Remark 2.3,  I 1>=)( nX
I

.

Let )(GVX  , 2|| X  and Xv . If we let }{\= vXY , then, since all the other vertices are

connected to v , we have XXNXvNXYXN \)(=\})({=\)\( . Thus, in view of Remark 2.2 and the second

part of Remark 2.3, 1|=|)( YXi . Hence,  I 1)( X . Therefore,  I 1=)(G .  �

Let us recall the definitions for the join and corona of graphs.

Let A  and B  be sets which are not necessarily disjoint. The disjoint union of A  and B , denoted by BA


 ,

is the set obtained by taking the union of A  and B  treating each element in A  as distinct from each element in B . The

join of two graphs G  and H  is the graph HG   with vertex-set )()(=)( HVGVHGV


  and edge-set

)}(),(:{)()(=)( HVvGVuuvHEGEHGE 


.

On the I -Integral of Graphs Under Some Binary Operations. 187



Let G  and H  be graphs of order n  and m , respectively. The The corona of two graphs G  and H  is the graph

HG   obtained by taking one copy of G  and n  copies of H , and then joining the i th vertex of G  to every vertex

of the i th copy of H . For every )(GVv , we denote by vH  the copy of H  whose vertices are attached one by one
to the vertex v .

For connected graphs G  and H  of orders 2,1  mn , respectively, the resulting graph for HG   is a
complete graph, which is already solved by the preceding proposition and thus we will exclude it in the next theorem.

Theorem 3.3 :  Let G  and H  be connected graphs of orders 1n , 3m , respectively. Then,

Proof. For the first case, it is enough to find an )( HGVX   such that  I 0=)(X . Suppose both G  and

H  are not complete graphs. Then, there exist )(GVv  and )(HVw  such that )(}][{ GVvN   and

)(}][{ HVwN  . Take },{= wvX . Note that )( HGEvw  . Hence, =)(XI . Moreover, since all of

)(GV  is connected to w  and all of )(HV  is connected to v , then )(=][ HGVXN  , and thus 0=)(Xo .

For the computation of )(Xi , let XY  . In view of the second part of Remark 2.3, it is enough to consider

}{= vY  or }{= wY . Without loss of generality,  let }{= vY . Then, }{=\ wYX .  All of )(GV  is connected to

}{w  but there exists a )(0 HVw   that is not connected to }{w , since )(}][{ HVwN  . Hence,

XYXNw \)\(0  . However, since all of )(HV  is connected to }{v , }),({0 wvNw   and thus,

},{\)(=\)(0 wvHGVXXNw  . Therefore, XXNXYXN \)(\)\(   and thus with Remark 2.2,

we can conclude that 0=)(Xi . Hence,  I 0=)(X
I

.

Now, suppose that  I 0=)(G  or  I 0=)(H . Without loss of generality, let  I 0=)(G
I

 and )(GVX   such

that  I 0=)(X . Then, 0=)(Xo , 0=)(Xi , and =)(XI  with respect to G . Moreover, )( HGVX 

and all of )(HV  is connected to X, hence )(=][ HGVXN   and 0|=][\)(=|)( XNHGVXo  .

Clearly, we also have =)(XI  with respect to HG  . To solve for )(Xi  with respect to HG  , let

XY  . Again, in view of the second part of Remark 2.3, it is enough to consider XY  . Let

YXX \=0 . Since 0=)(Xi  with respect to G , we have XXNXYXN \)(\)\(   with respect to

G , in view of Remark 2.2. Thus, there exists a XGVv \)(  such that )(XNv  but )\( YXNv . Since

 =)(HVX , we  also  have )\( YXNv  with respect to HG  . But )(XNv , with respect to
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HG  . Thus, with respect to HG  , we also have XXNXYXN \)(\)\(  . Therefore, 0=)(Xi  with

respect to HG  . Thus,  I 0=)(X .

For the second case, suppose that G  or H  is a complete graph and, I  0)( G  and  I 0)( H . Without loss

of generality, suppose that G  is the complete graph. Let )(GVv  and }{=0 vX . Then, in HG  , all of )(HV

is connected to v  and since G  is complete, we should have )(=}][{ HGVvN   and thus 0=)( 0Xo . Moreover,

by the second part of Remark 2.3, 0=)( 0Xi . Since }{=)( 0 vXI , we have  
I 1=)( 0X . Now, let

)( HGVX  . We are to show that  I 1)( X . If =X  and )(= HGVX  , then  I mnX =)( , by

Remark 2.3. Suppose )( HGVX  . If 1|=| X , then 1|=)(| XI  and hence  
I 1)( X . Suppose

2|| X . Then, either )(HVX   or )(HVX  . If )(HVX  , then there exists a Xu  such that

)(GVu . Note that all of )(HV  is connected to u , and since G  is complete, we have )(=}][{ HGVuN  .

We then want to solve )(Xi . Let }{\= uXY . Since X  contains vertices form both G  and H , we have

)(=][ HGVXN  . Thus, XYXNXuNXHGVXXN \)\(=\}][{=\)(=\)(  . Thus, in view

of Remark 2.2 and the second part of Remark 2.3, 11|=|)( XXi  and thus  I 1)( X . We are left to consider the

case )(HVX  . Since,  I 0)( H ,  I 1)( X , with respect to H . Then, at least one of )(Xo , )(Xi , and

|)(| XI  is greater than or equal to 1, with respect to X. Since X  has no element from )(GV , an isolate of X  with

respect to H  is also an isolate of X  with respect to HG  .  All of )(GV  is connected to X  in HG  , and hence

we are only left to consider )(HV  to determine )(Xo  for HG  . Thus, )(Xo  is the same for both H  and

HG  . In HG  , since )(GV  is connected to any vertex in H , the set )(XN  will only differ from )\( YXN

in )(HV , for )\( YX . Hence, )(Xi  is also equal for both H  and HG  . Thus, the  I )(X  is equal for

both H  and HG  . That is, the  I 1)( X , with respect to HG  , and the proof is complete.    �

Observe that for connected graphs G  and H  of orders 1=n  and 1,2=m , the corona HG   is a

complete graph, and thus its I -integral is equal to 1, by Proposition 3.2. For 1=n  and 3m , HG   is the same

as HG  , and thus its I -integral can be determined by Theorem 3.3. We will exclude those cases in the following
theorem.

Theorem 3.4 Let G  and H  be connected graphs of orders 2n , 1m , respectively.  Then,  I 0=)( HG  .

Proof. Just like in the first case of the preceding theorem, it is enough to find an )( HGVX   such that

 
I 0=)(X . Take )(= GVX . Since G  is connected and 2n , we have =)(XI . Clearly,,

)(=][ HGVXN  . Hence, 0=)(Xo . To determine )(Xi , note that )(=\)( )(
v

GVv HVXXN  . If

On the I -Integral of Graphs Under Some Binary Operations. 189



XY  , then )(=\)\( \)(
v

YGVv HVXYXN  . That is, XYXNXXN \)\(\)(  . Thus, in view

of Remark 2.2 and the second part of Remark 2.3, 0=)(Xi . Therefore,  I =)( HG   
I 0=)(X .  �

Remark 3.5  The set X  we use in the preceding two theorems to show that the I -integral is equal to 0 is a total
dominating set with the property stated in Theorem 2.9

Let us now consider the composition of two graphs. Recall that the composition ][HG  of two graphs G  and

H  is the graph with )()(=])[( HVGVHGV   and ])[(),)(,( HGEvuvu   if and only if either

)(GEuu   or uu =  and )(HEvv  .

Theorem 3.6  Let G  and H  be connected graphs of orders 2, mn , respectively. Then,  I 0=])[( HG  if

H  is not a complete graph. If H  is a complete graph, then  
I )(])[( SHG i , where S  is a minimum total

dominating set of G .

Proof. Suppose H  is not a complete graph. Then, there exists a )(HVv  such that 1)(  mvdeg . Let

S  be a minimum total dominating set of G . Then, =)(SI . We denote by vS  the set }:),{( Ssvs  . Note that

])[( HGVSv  . By the definition of composition, the induced subgraph of vS  in ][HG  is isomorphic to the

induced subgraph of S  in  G . Thus, =)( vSI . Moreover, since )(=)( GVSN , we also have

])[(=)( HGVSN v . Thus, 0=)( vo S  and vS  is a total dominating set of ][HG . Now, let vSvs ),( . Then,Then,

Ss  and S  being a minimum total dominating set implies that )(}){\( GVsSN  . Let }){\(\)( sSNGVy .

Then, })({sNy  and, either }{\ sSy  (as an isolate in }{\ sS ) or }{\ sSy  (or Sy , since sy  ).

This implies that in ][HG , )}),({(),( vsNvy   but )}),{(\(),( vsSNvy v . If Sy , then vSvy ),( .

Thus, we will have vSvsNvy \)}),({(),(   but vv SvsSNvy \)}),{(\(),(  . That is, vSvsN \)}),({( Ú

vv SvsSN \)}),{(\(Ú .  If }{\ sSy  (as  an  isolate), then )},{(\),( vsSvy v  (as an isolate). Since })({sNy  ,

by the definition of composition, )}),({(),( vsNvy   for all )(HVv  . Since 1)(  mvdeg , there exists

a )(HVv   such that v   is not connected to v . Note that )}),({(),( vsNvy  . However, since y  is an

isolate and )(HEvv  , we have )}),{(\(),( vsSNvy v . Thus, in this case, we also have vSvsN \)}),({( Ú
  vv SvsSN \)}),{(\(Ú . Therefore, by Theorem 2.9,  I 0=])[( HG .

For the second case, where H  is a complete graph, we proceed just like the first case but we will just take any

)(HVv , since for all )(HVv , 1=)( mvdeg . Then, following exactly the same argument as above, we will

have =)( vSI  and 0=)( vo S . It remains to show that )()( SS ivi   . Let Y  be an inner boundary set of

S . Then, |=|)( YSi . Suppose there exists a vv SZ  , that is SZ  , such that ||>|| YZ  and

vvvvv SSNSZSN \)(=\)\( . Then, if vv SZNvu \)(),(  , then )\(),( vv ZSNvu  . Hence, if SZNu \)( ,
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then )\( ZSNu . That is, SSNSZSN \)(=\)\( . This implies that ||>||)( YZSi  . A contradiction

to the maximality of Y , hence, )(|=|)( SYS ivi   . Therefore,  I ])[( HG  
I )()(=)( SSS iviv   . �

The following corollary follows directly from the second case of Theorem 3.6.

Corollary 3.7 Let G  and H  be connected graphs of orders 2, mn , respectively. If H  is a complete

graph, then  I :)({min])[( SHG i S  is a minimum total dominating set of }G .

We will now consider the cartesian product of two graphs. Recall that the cartesian product G H of two

graphs G  and H  is the graph with vertex set V(G H)=V(G)V(H)  and edge set E(G H) satisfying the following

condition: ),)(,( vvuu  E(G H) if and only if either vu =  and )(HEvu   or vu  =  and )(GEuv .

Theorem 3.8  Let G  and H  be connected graphs of orders 2, mn , respectively. Then,  I (G H)

)(Sm i , where S  is a minimum dominating set of G  and  I (G H) )(Xn i , where X  is a minimum

dominating set of H .

Proof. Let S  is be a minimum dominating set of G . Then, )(=][ GVSN . Just like in the preceding

theorem, we will use the notation vX  for the set }:),{( Xxvx  , if )(GVX   and )(HVv  or for the set

}:),{( Xxxv  , if )(HVX   and )(GVv . Let vHVv SK )(=  . Then, (VK  (G H) and

=][ VKN (G H). Hence, 0=)(Ko . Since H  is connected and of order 2m , any Kvs ),(  is connected

to some Kvs ),( . Hence, =)(KI . Now, let KY  be an inner boundary set of K . That, is |=|)( Ki YK .

Then, for every )(HVv , )(|| SSY ivK  . Hence, )(|| SmY iK  . Therefore,  
I (G H)

  
I )()(=)( SmKK ii   .

Let X be a minimum dominating set of H . Take vGVv XK )(=  . Then, following the arguments above,

but just exchanging the roles of G  and H , we should have  I (G H) )(Xn i .  �
The following corollary follows directly from Theorem 3.8.
Corollary 3.9 Let G  and  H  be connected  graphs of orders 2, mn , respectively. Then,

 
I :)(({min])[( SmHG i  S  is a -set of :)({} XnG i X  is a -set set of })H .
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