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Abstract

Let G = (V(G), E(G)) be an undirected connected graph and let X be a subset of V (G) . Furthermore,

let 1 (X) and B(X) denote the set of isolates and the boundary set of X, respectively. The inner boundary number
of X, denotedby £, (X) is B (X)=max{]Y |:Y = X and B(X \Y)\Y = B(X)}. Theouter boundary number
of X, denotedby B, (X) is B,(X) =V (G)\N[X]|. The | -integralof X is [,(X)=B,(X)+ B, (X)+[1(X)]

and the | -integral of G is L(G) = min{_fI (X): X 2V(G)}. In this paper, we determine the | -integral of graphs resulting

from some binary operations such as the join, corona, composition, and cartesian product of graphs.
Key words: | -integral, isolates, boundary
Mathematics Subject Classification: 05C69

1 Introduction

Consider a network of locations. We may represent it as a graph. Suppose we want to build production facilities
in some of these locations. Each of these production facilities can stand on its own but it has better production if connected
to another facility. These production facilities can distribute their products only to locations directly connected to it. We
further assume that the gain we may have in having one location for distribution is equal to the gain of having a production
facility connected to another facility or the gain of having one less “unneeded” production facility. Given a set of locations
for your production facilities you may count the locations that are not connected to any production facility, the number of
“unneeded” facilities, and the number of isolated facilities. What we want is the minimum of the sum of these numbers. For
example, consider the network of locations represented by a graph G below.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
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If you put four production facilities at locations &, C, h, and €, the locations that are not connected to any

production facility are J , |, f.and Q. The production facility located at € is an isolated facility because it is not

connected to any other facility. The production facility located at h is an “unneeded” facility because its set of locations
for product distribution, which is just location i, is already covered by the production facility in C . Thus, the number of

locations that are not connected to any production facility is 4 , the number of isolated facilities is 1, and the number of

“unneeded” facilities is 1. Summing up these numbers we have 6, and we associate this number as the | -integral of the
set of locations X = {a, c,h, e}. We may consider all other set of locations, and the minimum of the | -integral of all

these set of locations is what we mean as the | -integral of (S . These concepts were already defined precisely in®. For the
sake of completeness, we will give it again in the next section.

2 Preliminaries :

Let G be an undirected connected graph and let X be a subset of V (G) We first recall the following
definitions.

The set 1(X) = X \N(X) denotes the set of isolates in X and B(X) = N(X)\ X denotes the
boundary of X ,where N(X) ={y eV (G):yxe E(G) for some x € X} is the set of neighbors of X. Let
N[X]=N(X)uUX.Aset ScV(G) is a dominating set of G if N[S]=V (G). The domination
number ¥ (G) of G is the minimum cardinality of a dominating set. If S is a dominating set with | S |= ¥ (G) , then

we call S a minimum dominating set of G ora ¥ -setin G.If N(S) =V (G), then we say that S is a total

dominating setof G . The total domination number ¥, (G) of G isthe minimum cardinality of a total dominating set. If
S isatotal dominating set with | S |= 7, (G) , then we call S a minimum total dominating setof G ora ¥, -setin G .

Definition 2.1 The inner boundary number of X, denoted by f3; (X) is
B.(X)=max{]Y |:Y = X and B(X \Y)\Y = B(X)}.
The outer boundary number of X, denoted by S, (X) is
By (X) =|V(G)\N[X]].
The | -integral of X is [ (X) = B;(X)+ B, (X)+[1(X) | and the | -integral of G is
[,G)=min{[(X):X cV(G)}.

We will call Y < X such that B,(X) =|Y | an inner boundary set of X and the set V (G)\ N[X] the outer
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boundary set of X .
Remark 2.2 : It is easy to show that the equation B(X \Y)\Y = B(X) isequivalentto N(X \Y)\ X = N(X)\ X.

Observe that for a connected graph G of order N> 2, if wetake X =, B,(X) =|V(G)|=n and
B(X)=[1(X)|=0. Thus, J0=n. 1f X =V(G), then B, (X)=|1(X)|=0. Note that
B(X)=N(X)\X =V(G)\V(G) =& and B(X \X)\ X = . Thus, B,(X)=|V(G)|=n. Thus,
J,)=n.

Let T X cV(G) andY = X.IFY =@, then B(X \Y)\Y = B(X).If Y = X, then, since
X 2V (G), thereexistsa y €V (G) notin X andsince G is connected, there exists a path connecting Y to X.
The vertex in this path not in X but directly connected to X is an element of N(X). Hence,

N(X)\X = B(X)=@.But B(X\X)\X =& . Thus, 0< B,(X) <| X | -1.
We state it as a remark.

Remark 2.3 For a connected graph G of order n>2 and X =@ or X =V (G), [.(X)=n. Moreover,
if e X cV(G), then 0< B,(X) | X |-1.

Forthe graph G of order 1, say V (G) ={a}, theset X <V (G) iseither ¢ or {a}.If X = J, then
B.(X)=[1(X)|=0 and B,(X)=1.1f X ={a} then | I(X)|=1 and SB,(X) = 0. Moreover, you may
take Y ={a} and B(X \Y)\Y =& = B(X).Thus, B, ({a}) =1 and [,{a})=2. Hence, |,(G)=J,(2)=1.

For the connected graph G of order 2, say V (G) ={a,b}.theset X <V (G) iseither 5, {a}. {b}.
or V(G) . By Remark 2.3, (@)= [(V(G))=2.Let X ={a} or {b}. Then, B,(X)=0 and | I(X)[=1.

Moreover, by the second part of Remark 2.3, ,Bi (X) =0 . Hence, L(X) =1 and L(G) =1, We thus have the following
remark.
Remark 2.4 : For the graph G of order 1 or 2, L(G) =1,

The following results are from 2. The first theorem shows the bounds for the | -integral of a graph and the

second asserts the existence of a graph with | -integral equal to a natural number N . To see the construction of such a
graph, we reproduce the proof here.

We first recall that the degree of a vertex V ofagraph G is given by deg(v) =| N ({v}) | and the degree of
G, denoted by A(G), is max{deg(v):veV (G)}.
Theorem 2.5°% For any connected graph G of order n >3,

0< [ (G) <n-A(G).
Theorem 2.6 For any natural number N, there exists a connected graph G with .[.(G) =n,

Proof. Let N >1. Start with the path P, = [v},v},v3]. For vertices vl1 and V; connect additional N vertices.
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Let this new graph be G . Make N copies of G, labeling the vertices corresponding to Vll,Vé,Vé as Vlz,vzz,vsz,

3 ,,3,,3
v,V

3 e Vln,V;,Vg1 .For k=1,2,...,n =1, connect one additional vertex connected to Vg to one additional

\

vertex connected to vlk”. Let this new connected graph be Gn . We are to show that _[.(Gn) =n,

Let X, be the vertices {vll,vé,vf,v?f,...,vl”,vg} and X, be the vertices {V;,V?,Vg,...,vg}. Let
X = X, U X, .Then, X isatotal dominating set and thus we have f3, (X)=0and I (X)=. Now, consider
that X, < Xand B(X \ X,)\ X, = B(X) . It can be easily seen that X, is the largest subset of X having that
property, and hence, B;(X) =n. Hence, [,(X)=B,(X)+ B (X)+|1(X)|=0+n+0=n.

Let Y <V(G,) suchthatY = X .If X Y ,then Y isalsoa total dominating setand hence [3,(Y) =0
and 1(Y) = and B;(Y)=nN.Hence, [,(Y)=n.1f X isnotasubsetof Y, then at least avertexin X, orin X,
isnotin Y . Ifavertexin X, isnotin Y |, then f3, Y)=n.if X, cY and v; € X, isnotin Y, then vlk and Vg
which are vertices in X, are isolates. If we let S be the rest of X, in Y, we have f3; (Y)=|S|. Hence,

B+ 1Y) 2] X, |=n.Thus, [,(Y)>n. Therefore, [,(G)=n, by the minimality of [,(G). 0

The following are rectifications of some of the results from 3. The next theorem and its corollary rectify Theorem
2.2 and Corollary 2.3 in®.

Theorem 2.7 : Let G be a connected graph of order n > 3.
Then, _l.I(G)S%(G)—l.

Proof. Let X <V (G) suchthat N(X) =V (G) and y,(G) =| X |. Then, B,(X)=|V(G)\N[X]|=0
and 1(X)=O. Let Y < X such that B(X \Y)\Y =B(X). Observe that Y cannot be equal to X , since
B(X\X)= . Hence, 0]Y [ X |-1=17,(G)-1.

Thus,
J(G)=[,(X) = B (X)+ B, (X)+ ] (X)]
=0+]Y [+0<y,(G)-1. 0
Corollary 2.8 Let G be a connected graph of order n > 3.
Then, [ (G)+9,(G)<n-1,

The notation 0, (G) is for the | -differential of a graph G , defined as 0, (G) = max{o, (X): X <V (G)},

where 0, (X) =|B(X)|—|1(X)]|. The author had worked on this parameter with Canoy in*. This work had

inspired the author to develop the | -integral of a graph.
The next theorem rectifies Theorem 2.5 in®.

Theorem 2.9 Let G be a connected graph of order > 3. Then, | (G)=0 ifand onlyif G has a total
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dominating set S with the property thatforall X e S, N ({x})\SZN (S \{x})\S.
Proof. Suppose that [,(G)=0. Then, there exists S <V (G) such that B.(S)=S;(S)=0 and

1(S)=&. since B,(S)=0,wehave N[S]=V (G). Moreover, since S has no isolates, S < N (S) and
thus, N[S]=N(S)uUS = N(S), thatis, N(S) =V (G). Thus, S is a total dominating set.

Now, suppose that there exists a vertex X € S such that N({x})\S < N(S\{x})\S . That is, all
neighbors of X notin S are also connected to the other membersof S . Thus, N(S)\S = B(S) = N(S\{x})\S
= B(S\{x}) \{x}. Hence, B,(S)=1, a contradiction. Therefore, for all xS, N({x})\SZN(S\{x})\S.

Conversely, if S is a total dominating set of G, then S = and f,(S) = 1(S)|=0. Since for all

XxeS., N{X}P)\SZN(S\{x})\S.then S =V (G) andforevery x € S there is at least a neighbor of X not
in S and not connected to the other members of S .Hence, N (S\{x})\S = B(S\{x}) \{x} = N(S)\S = B(S).

Thus, for Y =S, B(S\Y)\Y = B(S). Hence, 3,(S) =0. Consequently, J,(G)=0. 0

3 Results

Remark 3.1 : As discussed in the introduction and in view of Theorem 2.5, a desirable network of locations

(agraph G ), based on our problem, is a graph G with L(G) =0. We will see in this section that it is the case for some
graphs under binary operations.

We will first obtain the | -integral of a complete graph.

Proposition 3.2 For the complete graph K, [ (K;)=1.

Proof. By Remark 2.4, [,(K,)=1 for n=1,2.Let n>3 and VeV (K,). Take X ={v}. Then,
B, (X)=|V(G)\N[X]|=|V(G)\V(G)|=0 and | I (X) |= 1. Moreover, by the second part of Remark 2.3,
Bi(X) =0 Hence, [(X)=1.1f X = or V(K,), then by Remark 2.3, [, (X)=n>1,

Let X cV(G), | X |22 and yve X . Ifwelet Y = X \{Vv}, then, since all the other vertices are
connectedto V, wehave N (X \Y)\ X = N({v})\ X = N(X)\ X . Thus, in view of Remark 2.2 and the second

part of Remark 2.3, [3;(X) =|Y [>1. Hence, L(X) >1, Therefore, L(G) =1 0

Let us recall the definitions for the join and corona of graphs.

Let A and B be sets which are not necessarily disjoint. The disjoint union of A and B, denoted by AU B,

is the set obtained by taking the union of A and B treating each element in A as distinct from each elementin B . The

join of two graphs G and H is the graph G+ H with vertex-set V (G + H) :V(G)CJV(H) and edge-set

E(G+H)=E(G)UE(H)U{uv:ueV(G),veV(H)}
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Let G and H be graphs of order N and M, respectively. The corona of two graphs G and H isthe graph
GoH obtained by taking one copy of G and N copies of H |, and then joining the i th vertex of G to every vertex

of the i th copyof H. Forevery veV (G) , we denote by H " the copy of H whose vertices are attached one by one
to the vertex V.

For connected graphs G and H of orders 1 < n,m < 2, respectively, the resulting graph for G+H isa
complete graph, which is already solved by the preceding proposition and thus we will exclude it in the next theorem.

Theorem 3.3 : Let G and H be connected graphs of orders N >1, m>3, respectively. Then,

0; if both G and H are not complete graphs or,
l(G+H)= if [[(G) =0 or [,(H)=0;
Il otherwise.

Proof. For the first case, it is enough to findan X <V (G + H) suchthat [ (X)=0. Suppose both G and

H are not complete graphs. Then, there exist V€V (G) and weV (H) such that N[{v}]#V (G) and
N[{w}] =V (H).Take X ={v,w}. Note that vw e E(G + H) . Hence, 1 (X) = . Moreover, since all of

V (G) is connected to W and all of \VV (H') is connected to v, then N[X]=V (G +H),and thus B,(X) =0.
For the computation of [3,(X), let Y < X . In view of the second part of Remark 2.3, it is enough to consider
Y ={v} or Y ={w}. Without loss of generality, let Y ={v}.Then, X \Y ={w}. Allof V (G) is connected to
{w} but there exists a W, €V (H) that is not connected to {W}, since N[{w}]=V (H). Hence,
W, & N(X \Y)\ X. However, since all of V(H) is connected to {v}, W, € N({v,w}) and thus,
W, € N(X)\ X =V (G+H)\{v,w}. Therefore, N(X \Y)\ X = N(X)\ X and thus with Remark 2.2,

we can conclude that 3,(X) = 0. Hence, [, (X)=0.

Now, suppose that [,(G)=0 or [ (H)=0. without loss of generality, let |, (G)=0 and X <V (G) such
that [ (X)=0. Then, B,(X)=0, B(X)=0,and I(X) =@ with respect to G . Moreover, X =V (G + H)
and all of V (H) is connected to X, hence N[X]=V(G+H) and B,(X)=|V(G+H)\N[X]|=0.
Clearly, we also have |(X) = with respect to G+ H . To solve for f3;(X) with respect to G+ H , let
Y X . Again, in view of the second part of Remark 2.3, it is enough to consider =Y < X . Let
Xo = X\Y = since B,(X) =0 with respectto G, we have N(X \Y)\ X = N(X)\ X with respect to
G . in view of Remark 2.2. Thus, there exists a V €V (G)\ X such that v N(X) but vig N(X \Y). Since
XNV(H)=C, we also have vg N(X \Y) with respect to G+H . But ve N(X), with respect to
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G+ H . Thus, with respectto G 4+ H , wealso have N (X \Y)\ X # N(X)\ X . Therefore, B,(X) =0 with
respect to G +H . Thus, [ (X)=0.

For the second case, suppose that G or H is a complete graph and,_l.I (G)#0 and L(H) # 0. Without loss
of generality, suppose that G is the complete graph. Let V€V (G) and X, ={V}.Then,in G+H ,allof V(H)
is connected to V andsince G iscomplete, we shouldhave N[{v}] =V (G + H) andthus S, (X,) = 0. Moreover,
by the second part of Remark 2.3, S,(X,)=0. since 1(X,)={v}, we have [(X;)=1. Now, let
X cV(G+H). We are to show that [[(X)>1.1f X =@ and X =V (G+H), then [(X)=n+m, by

Remark 2.3. Suppose @ # X <V (G+H).If | X |=1, then | I(X)|=1 and hence J,(X)=1. suppose
| X |=2. Then, either X <V (H) or X ¢V(H). 1t X ¢V(H), then there exists a y € X such that
U eV (G) . Note that all of VV (H) is connected to U, and since G is complete, we have N[{u}] =V (G + H).
We then want to solve f3;(X). Let Y = X \{u}. Since X contains vertices form both G and H , we have
N[X]1=V(G+H).Thus, N(X)\X =V(G+H)\ X =N[{u}]\ X = N(X\Y)\ X . Thus, in view

of Remark 2.2 and the second part of Remark 2.3, 3, (X) =| X |=1>1 andthus [, (X) >1. We are left to consider the

case X <V (H). since, J.,(H) #0, L(X) 21, with respect to H . Then, at least one of S,(X), B;(X), and
| 1(X) ] is greater than or equal to 1, with respectto X. Since X has no element from V (G), an isolate of X with
respect to H is also an isolate of X with respectto G + H . All of V (G) isconnectedto X in G+ H . and hence
we are only left to consider V (H) to determine 3,(X) for G +H . Thus, 3,(X) is the same for both H and

G+H . In G+H ,since V(G) isconnected to any vertexin H , theset N (X)) will only differ from N (X \Y)
in V(H),for (X\Y)#@.Hence, B,(X) isalso equal for both H and G + H . Thus, the [,(X) is equal for

both H and G+ H . That is, the L(X)Zl, with respect to G + H , and the proof is complete. a
Observe that for connected graphs G and H of orders n =1 and m = 1,2, the corona GoH is a

complete graph, and thus its | -integral is equal to 1, by Proposition 3.2. For n =1 and m>3, Go H is the same

as G+ H , and thus its | -integral can be determined by Theorem 3.3. We will exclude those cases in the following
theorem.

Theorem 3.4 Let G and H be connected graphs of orders n > 2, m > 1, respectively. Then, .[.(G oH)=0,.
Proof. Just like in the first case of the preceding theorem, it is enough to find an X <V (G oH ) such that
J(X)=0. Take X =V(G). since G is connected and n>2, we have |(X)=. Clearly,
N[X]=V(GoH).Hence, S,(X)=0.Todetermine 3;(X), note that N(X)\ X =, V(H"). If
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B#Y < X then N(X\Y)\X = UV (HY) . Thatis, N(X)\ X = N(X \Y)\ X . Thus, in view

of Remark 2.2 and the second part of Remark 2.3, [3;(X) = 0. Therefore, L(G oH)= J.I(X) =0. 0

Remark 3.5 The set X we use in the preceding two theorems to show that the | -integral is equal to 0 is a total
dominating set with the property stated in Theorem 2.9

Let us now consider the composition of two graphs. Recall that the composition G[H ] of two graphs G and
H is the graph with V(G[H]) =V (G)xV (H) and (u,v)(u’,v') e E(G[H]) if and only if either
uu' € E(G) or y=u' and W e E(H).

Theorem 3.6 Let G and H be connected graphs of orders N, M > 2, respectively. Then, [ (G[H1) = 0 if

H is not a complete graph. If H is a complete graph, then [ (G[H]) < B,(S), where S is a minimum total
dominating setof GG .
Proof. Suppose H s nota complete graph. Then, thereexistsa vV €V (H) such that deg(v) = m —1. Let

S be a minimum total dominating set of G . Then, 1 (S) = . Wedenote by S, the set {(S,V): S € S}. Note that
S, €V (G[H]). By the definition of composition, the induced subgraph of S, in G[H] is isomorphic to the
induced subgraph of S in G. Thus, 1(S,) =& . Moreover, since N(S)=V(G), we also have
N(S,) =V (G[H]).Thus, B,(S,) =0 and S, isatotal dominating set of G[H ]. Now, let (S,V) € S, . Then,
SeS and S beingaminimum total dominating set implies that N (S \{s}) #V (G) .Let y eV (G)\ N(S \{s}).
Then, Yy € N({s}) and, either y € S\{S} (asan isolate in S\{s})or y & S\{s} (or y ¢ S, since Yy #S).
This implies thatin G[H ], (y,v) € N({(s,V)}) but (y,v) & N(S, \{(s,V)}) .1f y & S, then (Y,V) & S,.
Thus, we will have (Y,V) € N({(s,V)})\S, but (y,Vv) & N(S, \{(s,V)}P)\S, . Thatis, N ({(s,v)})\S,&
N(S, \{(s,V)})\S,. If yeS\{s} (as an isolate), then (Y,V) € S, \{(S,V)} (asanisolate). Since y € N ({s}) ,
by the definition of composition, (y,V") € N ({(s,V)}) forall v'eV (H). since deg(v) = m —1, there exists
a V" eV (H) such that v is not connected to V. Note that (y,v"") € N({(s,V)}). However, since Y is an
isolate and W' & E(H) ,wehave (Y,V"") & N(S, \{(S,V)}) . Thus, in this case, we also have N ({(S,V)})\S,
Z N(S, \{(s,V)}\S, . Therefore, by Theorem 2.9, ,(G[H])=0.

For the second case, where H is a complete graph, we proceed just like the first case but we will just take any

veV(H),sinceforall veV (H), deg(v) = m—1. Then, following exactly the same argument as above, we will
have 1(S,) =< and ,(S,) = 0. It remains to show that 3,(S,) < ,(S) . Let Y be an inner boundary set of

S. Then, fB,(S)=|Y|. Suppose there exists a Z, < S,, that is Z < S, such that |Z |>|Y | and
N(S,\Z,)\S, =N(S,)\S,. Then, if (u,v)eN(Z,)\S,, then (u,v)e N(S,\Z,). Hence, if ue N(Z)\S,
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then Ue N(S\Z). Thatis, N(S\Z)\S = N(S)\S. This implies that 3,(S)>| Z [>|Y |. A contradiction
to the maximality of Y, hence, 3;(S,) <|Y |= B,(S) . Therefore, [,(GIHI)<[(S,)=B,(S,)<B(S). o

The following corollary follows directly from the second case of Theorem 3.6.

Corollary 3.7 Let G and H be connected graphs of orders N, m > 2, respectively. If H is a complete

graph, then L(G[H]) <min{f;(S): S isaminimum total dominating set of G}.

We will now consider the cartesian product of two graphs. Recall that the cartesian product G H of two
graphs G and H is the graph with vertex set V(G H)=V(G)xV(H) and edge set E(G H) satisfying the following
condition: (u,u’)(v,v') € E(G H)ifandonly if either U=V and u'v'e E(H) or ' =V and uv e E(G).

Theorem 3.8 Let G and H be connected graphs of orders n,m > 2, respectively. Then, L(G H)
< m,Bi(S) , where S is a minimum dominating set of G and L(G H) < nB.(X), where X isa minimum

dominating setof H .

Proof. Let S is be a minimum dominating set of G . Then, N[S]=V (G) . Just like in the preceding
theorem, we will use the notation X, for the set {(X,v): X e X},if X <V (G) and veV (H) or for the set
{(v,x):xe X}, if X<cV(H) and veV(G). Let K=U,4u)S,. Then, K<V (G H) and
N[K]=V(G H).Hence, 5,(K)=0.Since H isconnected and of order m > 2, any (s,V) € K is connected
to some (S,V") € K . Hence, 1(K) = . Now, let Y, be an inner boundary set of K. That, is 3, (K) =|Y, |.

Then, for every veV (H), |Y. NS, [<B,(S). Hence, |Y,[<mpB.(S). Therefore, [ (G H)
< [(K) = Bi(K)<mpi(S).

Let X be a minimum dominating set of H . Take K = Yvev @) XV. Then, following the arguments above,

but just exchanging the roles of G and H , we should have L(G H) < ng(X). O
The following corollary follows directly from Theorem 3.8.
Corollary 3.9 Let G and H be connected graphs of orders N,m> 2, respectively. Then,

JGIHD <min({mpB,(S): S isa ysetof GInB(X): X isaysetsetof H}).
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