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Abstract

In this paper I have proved a theorem on the Absolute Euler
Summability of a Factored Fourier series, Which generalizes various
known results. However the theorem is as follows
Theorem:- If

O(t) = I, tO (t)l at = o

A,(x) i'., = lE,ql, q>0

Io>-
2

A"r, i
n=l

where l,n is convex sequence such that I * isconvergent.
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Introduction

1. Definilions and Notations :

Definition I -Let lan be an infinite
series with the sequence of partial

sums {sn}. The Euler" series-to-series
transform

-n /n\
bn=(q+l)-n I l:: I qo-u4u q>0,

u=o \D/

If tb" isconvergent,wesaythat lan
(orthe sequence {sn}) is summable (E,q), q >
0, in short we write

Iu". (E, q)[or {s"} e le,ql], q>o

Iftb" is absolutelyconvergen! we say

that lan (or the sequence {s"}) is summable

(E, q), q > 0, in short we writel-2

F f , ,I

Lu^ . lE, ql [or {s,} . lE,qlj, q>0

De/inition 2 : The series )an is said

to be summabte lE" I tO . a < 1) , if

.q (n)
t = ) | | au(l-o)n-u sD'n 

't* [uJ
(l.l) and I 1,,-1,'., | <oo

Since

+ (")rn = L l., l o'(l-cr)o-uDau
t=l \ ",/

= n (t. -to_,)
(1.1) isequivalentto
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tkJ <@LJn

It is easy to notice Kwee3 that
definition I reduces to definition 2, with the

(1 -o\substitution q = \' *" 
, 0<o<1,

o
i.e.

(r.2)

E, (l-o)
o

N 
lp, l, o<a <1.

It is also known from Kwee3 and

Tripathy6thatthe Eo means given abovecan

be derived from Hausdorff means.

Let f (t) be Lebesgue integrable over
(-n,n) and periodic with period 2n and let

(1.3) r(t)_;tu+i(a" cosnt+b, sinnt): f e, ttl

We write throughout

I
0 (t) = ; {f (x+0 +f (x-t)},

.1r.
0"(t)=ft J (t-u)'-' 0 (u)du, o)0,

d^d'"(t) = ' (t)
00 0.,

(t) = f (o+l) t' (t), (c > o)

AFn = Fo - Fo+r

We need the following estimates for
the proofofthe theorem
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u.J

and

[o (rrt"-'Y') I
l" (t):lo 

ir,"',v,'p. (s) + o 1n@'e; J

for 0<a<2 and 0<6 < zt

2. The absolute Euler summability of a
Fourier series have been studied by Mohanty

and Mohapatraa and Kwee3 independently and

their results read as follows.

TheoremA: rf 010 tog fl) . Bv (0,6)
\ r./

0<6<1,then
@

I A" (x) = lE,ql, q>o
n=0

We state below a result on absolute

Euler summability of a factored Fourier series

due to Tripathy6.

Theorem,Bj If 0{t) e BV(0, n),

@

then I n-r A' (x) = lE,ql,
n=l

where l. > max [t - !, 1).
\." 2' 2 )'

o. o.1
2

q>0,

Ray and Patras extended the above

theorem by proving the following theorem.

d
Theorem C: If'"(t)e BV (0,6),6 > 0,

tr,*I A.(x)lndz e lP,ql, q>0

for 0 <a <2.

The object ofthis paper is to generalize

above theorems by establishing the following
theorem.

3. We assert the following main theorem.

Theorem : If

Oal = .|l l4tll ot =

@

then I A"(x) i,." . lE,ql, q>0
n=l

where l,n is convex sequence such that

F 'vn is conversent4.
-n

4. Proofofthe theorem: Let t, (x)

represents ttre 
I 
E, U lmean of the sequence

{1" A" C) }. Then we haves

)^
t" (x) =- IE JI,

2 (1w tn \ .

= ; U' * 
l'1"' ) Q 

(t) c" (t) dt

= I, + Ir, say

To prove the theorem, it is sufficient to prove
ihat
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(r.4) g" n :{3 
t$'u,r.o (,r d (t)
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I ld = I l! + I U <@ (m+o)?un3n3n
=I, + Z* say

Now

I, = t : (") lfi^tr 
(t)l'e u,i o,,.u')

* Ki ro lr"" lo(olt'oF-'dt
n=2

= Kt f+l i o^"u2+Ki 3\
o=z- [. 7 u=r ?. n

= ri m,u'i ne-3 + K
u=2 n=u+l

:K

where K is an arbitrary constant.

Again

gln
Lr< K )t=2 n 1", o (t) J" (t) dt

*K i * n I Of,ll at {o (nt'-zriz, I

{*o(".-* 
p'(a))* o6(o-z>a x") + 

"[* : ^Ur)]
ellnl
l" d (t) J" (t) dtlrvlf

*K t # I:^l oo; a, *K i # I" f 4(t)l at



+K>
n=2

m-KI
n=2

+Ki
n=2

m-lKT
n=2

o (1)

+KI
n=2

\un r1@-z)tz

n2

(1-o)"

2r7

+K
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no
-_;
n-

+KI i +K: (*) ,'-o)"I
n=2

s (l-")"-lt 
I ,. (*) - f (x)l *K i=KI t 

t u=2
^-t

=K i (s1,"(*)-r(x)l +K
n=2

using the Abel's transformatio

A}'u u

Alu, u (1-o)"

= K i [: ,s, (x)-r(x)l)

+ k:1,"(")-r(x)l(r - cr)n +K

(t \
(1-o)" Al-ol o(,t) +(1-o)' 5 o(m) +K\ / [n,/ m
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This conipletes the proof of the theorem'
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