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Abstract

In this paper I have proved a theorem on the Absolute Euler
Summability of a Factored Fourier series, Which generalizes various
known results. However the theorem is as follows
Theorem :- If
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where A, is convex sequence such that Z —n is convergent.
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Introduction

1. Definitions and Notations :

Definition 1 —Let Y a, be an infinite
series with the sequence of partial
sums {s,}. The Euler’® series-to-series
transform

n n n-v
b= ()" X (D] Tk A

v=0

If 3'b, is convergent, we say that Ya,
(or the sequence {s,}) is summable (E,q), >
0, in short we write

Zan e (E, q)[or {s.} € ] q>0

E,q

If 3’by, is absolutely convergent, we say
that X.a, (or the sequence {s,}) is summable
(E, q), > 0, in short we write!"2

da, €lE q [or {s.} e IE,ql], q>0
Definition 2 : The series Y a, is said
to be summable |E, | (0<a<l1), if

t, = i (:) a’ (1-a)"™" s,

v=0

(1.1) and D |t,—t, | <o
Since
n n
7, =R (] o’ (1-0)"" v a,
v=l L)
=n (t,—-t,_)
(1.1) isequivalentto
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It is easy to notice Kwee® that

definition 1 reduces to definition 2, with the
(1-a)

substitution q = R
o

O<ax<l,

i.e.

~

(1-a)

a

E, |E

L O<a<l.

o

It is also known from Kwee® and

Tripathy® thatthe E, means given above can
be derived from Hausdorff means.

Let f (t) be Lebesgue integrable over
(-m,®) and periodic with period 27 and let

13)r® liao +i(an cosnt+b, sinnt)= i A, ®)

We write throughout

@) = 15 (f x+9 +f -0},

¢a(t)=—l_% Lt t-w* ¢ (wdu, a>0,

¢°(t) = <I)(t)

g d,

® = T@+Dt* @), (a=0)
A p‘n T un il l"’n+l

We need the following estimates for
the proof of the theorem
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and

O (n(a-2)/2)
Ja (t)={0 @22 p* (8) + O @“>?) }

for 0<a<2 and 0<d6 <=

2. The absolute Euler summability of a
Fourier series have been studied by Mohanty

and Mohapatra* and Kwee? independently and
their results read as follows.

1
Theorem A : If ?(t) log (;) e BV (0,9)

0 <6 <1,then

> A, ® €|Eq|,q>0

n=0

We state below a result on absolute
Euler summability of a factored Fourier series

due to Tripathy®.

Theorem B: If ¢o(t) e BV, @), 0<a< -:2)’-

M

then ?, 0 A, ®) €|E,q|, q>0,

Il
—_—

n

where A > max (a-l, l)
o1 2

Ray and Patra’® extended the above
theorem by proving the following theorem.
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Theorem C : If¢“ e BV (0,9),6 >0,
thend. A,(x)/n** e |Eq|,

O0<a<2.

q>0

for

The object of this paper is to generalize
above theorems by establishing the following
theorem.

3. We assert the following main theorem.

Theorem : If

t |

0® = [ |6®| dt =0 a>—
| ()]

then i A, ¥ A, €l|Eq

n=l

, q>0

where A, is convex sequence such that

Zn . 4
X is convergent”.

4. Proof of the theorem : Let 1 (X)
represents the |E, q | mean of the sequence

{),,A,(x)} . Then we haves
L® =2 [ 6 0e O
T

= 2 (17 +0) vom0a
= I, + 1, say

To prove the theorem, it is sufficient to prove

that
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=K) M0 " +K
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where K is an arbitrary constant.

Again
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using the Abel® transformation
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This completes the proof of the theorem.
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