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Abstract

This  study  introduces  a new geodetic  invariant, the  path-induced geodetic  number  of a  connected
simple  graph  G.   We  investigate its properties  and characterize the path-induced geodetic sets of some com-
mon graphs.  Also, the  path-induced geodetic numbers  of these  graphs are determined.
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1    Introduction

The  concept  on path-induced geodetic  numbers  of graphs  follows from the definition of geodetic
numbers of graphs introduced  by Buckley and Harary in2.

Let G be a connected  simple nontrivial  graph.  The distance  between two vertices  u and  v in G,
denoted  by dG (u, v), is the  length  of a shortest  path joining u and v.  A shortest  u-v path  is called a u-v
geodesic.  For every two vertices u and v of G, the  interval  IG [u, v] denotes  all vertices lying in some u-v
geodesic.  The geodetic closure  IG [S] is the union of intervals  between all pairs of vertices from S, that  is,
IG [S] = {IG [u, v] : u, v  S}.  A geodetic set of G is a set S with IG [S] = V (G).  The geodetic number  g(G) of
a graph G is the minimum cardinality  of a geodetic set.

The  reseachers  find  it  interesting   to  study  the  geodetic  set  S  of G  in which the  subgraph  induced
by the  set S, denoted  by S,  is connected  and contains a path P , where V (P) = S. Such sets are called path-
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induced geodetic sets.    The  researchers  believe  that   the  concept  on  path-induced  geodetic numbers of
graphs can be applied in travel time saving, facility location, goods distribution, and other things in which this
concept will be of great help.

2    Preliminary Concepts and Results

Definition 2.1 2 The  degree  of a  vertex  v in  G  is the  number  of edges incident with v and denoted by degG

(v).  A vertex is called an end-vertex if its degree is 1.

Definition 2.2 2 The removal of a vertex v from a graph  G results  in the subgraph  G  v consisting  of all
vertices  in G  except  v  and  all edges not incident with v.

Definition 2.3 2 A vertex x of a graph G is called a cut-vertex if the removal of x increases the number  of
components  of a graph G. We will use w(G) to describe the number of components  a graph G has.

Definition 2.4 2  In  a  graph   G,   the   neighborhood  NG (v)  of  a  vertex v  V (G) is the set consisting of all
vertices u which are adjacent to v, that  is, NG(v) = {u  V (G)|uv  E(G)}.  A vertex v in G is an extreme vertex if
the neighborhood NG (v) of v induces a complete subgraph  of G.

Definition 2.52 A nontrivial connected graph without  cut-vertices is called non-separable  graph.  Otherwise,
such graphs are separable.

Definition 2.6 2 Let G be a nontrivial  connected graph.  A block B of G is a subgraph  of G that  is itself
nonseparable  and which is maximal with respect to this property.

Definition 2.7 2 A  spanning  subgraph  is  a  subgraph   containing   all  the vertices  of G.   If that  subgraph  is
a path,  then  it  is called a spanning  path of G.

Definition 2.8  Given a connected graph G and S  V (G), the set S is called a path-induced  geodetic set of G
denoted by pig-set, if it satisfies the following properties:

1. IG [S] = V (G).
2. S   is connected.
3. S contains  a path  P , where V (P ) = S.
The minimum cardinality  of a path-induced geodetic set is called path-induced geodetic number  of G, denoted
by pign(G).   A path-induced geodetic set of smallest cardinality  is called a path-induced  geodetic basis of G.

Example 2.9  Consider the graph G in Figure 1 below.

Figure 1: A graph G with pign(G) = 4.
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Let S1  = {v1, v3, v4}. Now, we have
IG [S1]    =  IG [{v1 , v3, v4}]

=  IG [v1, v3 ]  IG [v1 , v4]  IG [v3, v4]
=  {v1, v2, v5 , v3}  {v1, v2, v5, v4}  {v3, v4}
=  {v1, v2, v3 , v4, v5}
=  V (G).

But S1 is not connected.  Hence, it is not a path-induced geodetic set.  So we will add  another  vertex.
Let S  = {v1, v2, v3, v4}.   Note that  IG [S] = V (G). Moreover,  S  is connected.    Furthermore,  S  contains  a
path  P ,  where V (P) = S.  P  can be the path  [v1, v2, v3, v4] or [v1, v2, v34, v3]. Consequently,  S is a pig-set of G
and by definition, pign(G)   |S| = 4.  Clearly, pign(G)  1. Also, there is no set S of cardinality  less than 4 for
which S is a pig-set. Hence, S = {v1, v2, v3, v4} is a path-induced geodetic basis of G. That  is, pign(G) = 4.

Proposition 2.103 Every extreme vertex is an end vertex of every geodesic containing  it.

Theorem 2.11 3 For  integers  m, n  2, g(Km,n ) = min{m, n, 4}.

Theorem 2.12 3 For  any integer n   2, g(Pn ) = 2.

3    Path-Induced  Geodetic Numbers of  Some Graphs :

First,  we have  to  remark  that not  all connected  graphs  have  path-induced geodetic set.  To illustrate  this,
let us have the following example.

Example 3.1  Consider the star S4 in Figure 2. Observe that  the only geodetic sets of S4  are the sets S = {v1, v2,
v3, v4} and S* = {v1, v2, v3, v4, v}.  But,   S is a totally  disconnected  graph,  and so, not a path-induced geodetic
set.  On the other  hand,   S* is S4  itself and hence,  S* is connected.  But,  S* does not contain  a path  P
where V (P) = S*. Thus,  S* is also not a path-induced geodetic set.  That  is, S4  does not have a pig-set.

Figure 2: A graph without  a pig-set

In general, the graph Sn does not have a path-induced geodetic set, for all n  3.

To this extent,  we will give conditions  for a connected  simple graph G to have a path-induced
geodetic set.  Let us have first these following results.

Theorem 3.2  Let  G be a  connected  graph  with cut-vertices.   If S  V (G) is a path-induced  geodetic basis
of G and  x is a cut-vertex  of G,  then  every component of G  x contains  a vertex in S.



Proof :  Let  x  be  a  cut-vertex   of  G  and  S  be  a  path-induced  geodetic basis  of G.    Let  C1, C2, . . . , Ck   be
the  components  of G  x.    It  remains to  show that  each  Ci  contains  a vertex  in S.   Suppose  that  there  exists
a component,  say C1, of G  x that  does not  contain  a vertex  in S.  Further, let  V (C1)  = {r1, r2, . . . , rt},  for some
integer  t.  Since S  is a path-induced geodetic  basis  of G,  there  exist  u, v   S  such  that   ri , 1    i   t, lies in
some u-v geodesic.  But  this  is impossible since the walk we can make starting from vertex  u  and  ends  with
vertex  v traversing  vertex  ri  is given by [u = u0, u1, . . . , x, . . . , ri , . . . , x, . . . , ul  = v], which is not a u-v geodesic.
This is a contradiction.  Hence, C1  must contain a vertex in S.  

Lemma 3.3  Every cut-vertex  of a connected  graph G belongs to every path- induced geodetic basis of G.

Proof : Let G be a connected graph and S be a path-induced geodetic basis of G. Suppose that  x is a cut-vertex
of G and let C1 , C2, . . . , Ck  be the components of G  x.   By  Theorem  3.2,  S  contains  at  least  one vertex  from
each  Ci, i  = 1, 2, . . . , k.   Since the  subgraph  S of G  is connected,  it  follows that x  S.  

The  following three  results  are useful in determining  whether  a graph  G  has a path-induced
geodetic set or none.

Theorem 3.4  Let G be a connected nontrivial  graph of order n.  If G contains a spanning  path, then G has a
path-induced  geodetic set.

Proof : Let G be a connected nontrivial  graph of order n and let G contains  a spanning  path.   Take  S = V (G).
Then,  IG[S] = V (G).  Moreover, S is the graph  G itself and hence, connected.  By assumption,  G contains  a
spanning path  P, that  is, V (P) = V (G) = S.  Therefore,  S is a path-induced geodetic set of G.                

In view of  Theorem  3.4, if a graph  G contains  a spanning  path,  then  we can automatically proceed
in finding the path-induced geodetic number of G.

Theorem 3.5  Let G be a connected graph with cut-vertices.  If G has a path-induced geodetic  set, then
w(G  x) = 2 for every cut-vertex x of G.

Proof : Let  G  be a  connected  graph  and  let  S  be a  path-induced geodetic basis  of G.   Let  x   V (G)  be a
cut-vertex.    Suppose  on the  contrary  that w(G  x)    3 and  let  C1, C2, . . . , Ck , k  3, be the  components  of
G  x. By  Lemma  3.3  and  Theorem  3.2,  x    S  and  S  contains  a  vertex  of Ci for all  i.    Hence,  S  = {S1  
S2   . . .   Sk    x  :  Si     Ci , k    3}.  By definition,  S contains  a path  P, where V (P ) = S.  But  this  is
impossible to happen  since the walk we can make traversing  all vertices  of S is given by [v11 , v12  , . . . , v1r,
x, v21,  v22, . . . , v2s , x, . . . , vk1, vk2, . . . , vkt ], vij   Si, which is not a path.  This is a contradiction.  Hence,
w(G x) = 2. 

The contrapositive  of Theorem  3.5 says that  if there  exists a cut-vertex  x of G with w(G  x)  3, then
G has no path-induced geodetic set.

Figure 3 shows an illustration of the  situation  described in Theorem  3.5. w(G  v2 ) = 3 and therefore
does not allow G to have a path-induced geodetic set.

Figure 3: A graph without  a pig-set
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Theorem 3.6  Let G be a connected graph with cut-vertices.  If G has a path-induced geodetic set, then each
block of G contains  at most 2 cut-vetices.

Proof : Let  G be a connected  graph  with  cut-vertices  and  let  S  be a path- induced geodetic basis of G.
Suppose there is a block B of G with cut-vertices v1 , v2, v3.  By Theorem  3.5, w(G  vi ) = 2, i = 1, 2, 3.  Observe
that  there  is a component  of G  vi, say Bi, in which V (Bi)  V (B)  = . By Theorem 3.2, each Bi  contains  a
vertex  in S.  By assumption,  there  is a path  P  that contains all the vertices in S. But to get from any vertex in
V (Bi) to a vertex x  V (Bj), it needs to pass through vi. To get from vi to x, the  path  must pass through  vj. Using
the same argument as in the proof of  Theorem 3.5, we see that  P  needs to visit one of the cut-vertices  v1, v2,
v3  at least twice, which is a contradiction to P  being a path.  

The  contrapositive  of Theorem  3.6 says that  if there  exists a block of G with three or more cut-
vertices,  then  G has no path-induced geodetic set.

Figure  4 shows an illustration of the  situation  described in Theorem  3.6. Block B has three cut-
vertices  v1, v2, v3 and therefore does not allow G to have a path-induced geodetic set.

Figure 4: A graph without  a I-set

From this point onwards, the  graph G  considered  has  path-induced geodetic set.

Remark 3.7 Since every path-induced geodetic set S is a geodetic set of G, we have g(G)  pign(G).

Now, since any geodetic set needs at least two vertices while the maximum number  of vertices  a path-
induced geodetic set can  have  is the order  of G, together  with Remark  3.7, we have the following remark.

Remark 3.8  Let G be a connected nontrivial  graph of order n.  Then

2  g(G)  pign(G)  n.

Theorem 3.9  Let G be a connected  graph and  S be a path-induced  geodetic basis of G. Then every extreme
vertex of G is contained  in S.

Proof :  Let  G  be  a  graph  and  S  be  a  path-induced  geodetic  basis  of G. Suppose  on the  contrary  that  there
exists  an  extreme  vertex  u of G which is not  contained  in S.  However, by definition  of S, IG [S] = V (G),  so
there exist x, y  S such that  u IG [x, y]. This implies that  u lies in the x-y geodesic and by Proposition  2.10,
u must be an end-vertex,  that  is, u = x or u = y. But this is impossible to happen since x and y are in S, a
contradiction. Therefore, u  S. 
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Remark 3.10  Every vertex of a complete graph Kn is an extreme vertex.

Theorem 3.11  For  any natural  number n, pign(Kn ) = n.

Proof : Let V (Kn) = {v1, v2, . . . , vn} and let S be a path-induced geodetic basis of Kn .  By Remark  3.10 and
Theorem  3.9, vi    S i  = 1, 2, . . . , n.  That  is, S = {v1, v2, . . . , vn}.  Therefore, pign(Kn) = n.            

The following theorem  is one of the necessary conditions  of a graph G of order n to have pign(G) = n.

Theorem 3.12  Let G be a connected  graph with |V (G)| = n.  If every vertex of G is either an extreme vertex or
a cut-vertex of G, then pign(G) = n.

Proof : Let G be a graph with |V (G)| = n and S be a path-induced geodetic basis  of  G.  Suppose  v    V (G).     If
v  is  an  extreme   vertex,   then   by  Theorem  3.9, v  S.  Also, if  v is a cut-vertex,  then  by Lemma 3.3, v  S.
Hence, in either case, v  S.  Therefore, S = V (G) and thus, pign(G) = n.  

Remark 3.13  Every end-vertex  in a graph G is an extreme vertex.
Theorem 3.14  Let G = Pn . Then pign(G) = n, for all n  2.
Proof :  Let  G  =  Pn  and  V (G)  = {v1, v2, . . . , vn},  as  shown  in  Figure  5.

Figure 5: A path  Pn of order n, n  2

Let S be a path-induced geodetic basis of Pn.  Note that  v1  and vn  are end-vertices and by Remark  3.13, v1, v2

are extreme  vertices of Pn.  Also, vertices v2, . . . , vn-1  are cut-vertices  since w(Pn  vi) = 2 for each i = 2, 3, . . .,
n  1. Hence,  every vertex  of Pn  is either  an  extreme  vertex  or a cut-vertex.    By Theorem 3.12,
pign(Pn ) = n. 

The following result is immediate:

Corollary 3.15  If n = 2, then pign(Pn) = g(Pn).

The  next  theorem  characterizes  those  connected  nontrivial  graphs  G for which the path-induced
geodetic number is 2.

Theorem 3.16  Let G be a connected nontrivial graph. Then, pign(G) = 2 if and only if G = P2.

Proof : Let S = {u, v} be a path-induced geodetic basis of G. Suppose G  P2. Then there exists x   V (G) such
that  x   u and x   v. But, x   IG [u, v] since dS (u, v) = dG (u, v) = 1.  Thus,  S is not a path-induced geodetic basis
of G, a contradiction.  Hence, G = P2. Conversely, If G = P2, then  pign(G)  = 2 by Theorem 3.14.  

The next theorem  gives the formula on how to get pign(Cn) for n  3.
Theorem 3.17  Let G = Cn . Then for n  3,
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Proof : Let G = Cn and V (G) = {v1, v2, . . . , vn}.  Consider the following cases for the order n of graph G.

Figure 6: Cycle Cn of order n

Case 1:  When n is odd, say n = 2k + 1, for some integer k.
For   a  cycle  Cn   of  order   n   =  2k + 1,   it   is  the   union   of  two   paths [v2k+1 , v1, v2, . . . , vk+1 ]   and   [vk+1,
vk+2 , . . . , v2k+1 ]   of  lengths   k + 1  and   k, respectively.  Let S = {v2k+1 , v1, v2 , . . . , vk+1 }.  Observe that  IG [S]
contains the vertices on [vk+1 , vk+2 , . . . , v2k+1 ] where {vk+1 , vk+2 , . . . , v2k+1 } = IG [vk+1 , v2k+1 ].  Thus,
IG [S] = V (G).  Moreover, S is connected and contains a path  P where V (P ) = S. In fact, P  is S itself. Thus,
S is a pig-set. Moreover, there is no pig-set of cardinality  less than  that  of S. Therefore,

pign(G) = |S| = |{v1 , v2, . . . , vk+1 }  {vn  = v2k+1 }| = (k + 1) + 1 = 
2

1n
+1.

Case 2:  When n is even, say n = 2k, for some integer k.
Observe  that  paths  [v1 , v2, . . . , vk+1 ]  and  [vk+1  , vk+2 , . . . , v1] are  of the  same length.  Hence,  IG [v1, vk+1]=
V (G).    That   is,  the  minimum  number  of vertices for a geodetic set S where S is connected and contains a
path P with  V (P ) = S is attained if S = {v1 , v2, . . . , vk+1 } or S = {vk+1 , vk+2 , . . . , v2k, v1 }. Therefore, pign(G)

= |S| = |{v1 , v2, . . . , vk+1 }| = k+1 =
2
n

1.   

Lemma 3.18  For  all  integers  m, n   >  2,  let  U   =  {u1, u2, . . . , um}  and W  = {w1, w2, . . . , wn} be partite  sets
of Km,n .   A subset S of V (Km,n) is a path-induced  geodetic set of Km,n  if and only if S is any of the following:

1. S   =  A  B,   where  A     U, B     W   with  |A|   =  |B|   =  r,  2  r min{m, n};
2. S   = A  B,  where  A   U, B   W  with  |A|  = s, |B|  = s + 1,  2 s  min{m, n  1};
3. S   = A  B,  where  A   U, B    W  with  |A|  = c + 1, |B|  = c, 2  c  min{m  1, n}.

Proof :   ()   Let   G     =    Km,n   and   let   U     =   {u1, u2, . . . , um}   and W = {w1 , w2, . . . , wn} be partite sets
of  G, where m, n > 2.

(1)  Let  S   =  A  B,  where  A    U ,  B     V    with  |A|  =  |B|  =  r, 2      r     min{m, n}.   Without    loss   of   generality,
assume   that A = {u1, u2, . . . , ur} and  B  = {w1 , w2, . . . , wr}. Note  that  IG [ui, uj]  = W for any ui, uj   A, i  j,
since [ui , w, uj] is a ui -uj  geodesic in G for all w W .   Also, IG [wk , wl]  = U for any  wk , wl   W, k    l, since
[wk, u, wl]  is a wk - wl geodesic in G for all u  U.  Thus,  IG [S] = V (G).  Since every vertex  in A is
adjacent to every vertex in B, S is connected. Moreover, S contains a path P  where V (P ) = S.  The  path  P
can be the  path  [u1, w1, u2, w2 , . . . , ur , wr]. Therefore, S is a path-induced geodetic set of G.
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(2)  Let  S  = A  B,  where  A   U ,  B   W  with  |A|  = s,  |B|  = s + 1, 2     s     min{m, n  - 1}.  Without   loss  of
generality,   assume   that A = {u1, u2, . . . , us} and B = {w1, w2, . . . , ws, ws+1 }.  From  the  proof of (1),  IG [ui , uj]
= W for any two distinct  vertices ui , uj   A and IG [wk , wl] = U for any two  distinct  vertices  wk , wl   W .  Hence,
it follows that  IG [S] = V (G). Also,  S is connected  since every vertex  in A is adjacent  to every vertex  in B.
Moreover,  S contains a path  P  where V (P) = S. The path  P  can be the path  [w1, u1, w2, u2, . . . , ws , us , ws+1].
Therefore,  S is a path-induced geodetic set of G.
(3)  Let  S  = A  B,  where  A   U ,  B   W  with  |A|  = c + 1,  |B|  =  c,  2     c     min{m   1, n}.   Without   loss
of  generality,   assume   that A  =  {u1, u2, . . . , uc, uc+1 }  and  B   =  {w1, w2, . . . , wc}.     Following  similar
argument at the proof of (2), IG [S] = V (G),  S is connected and S contains a  path  P  where   V (P )   =   S.   The
path  P  can   be   the   path [u1, w1, u2 , w2, . . . , uc, wc, uc+1 ].  Consequently,   S  is a  path-induced geodetic set
of G.

() Let  S  be  a  path-induced geodetic  set  of G.   By  definition,  S is connected.  Hence, S must
contain  a vertex  in U and a vertex  in W, that  is, S   =  A  B,  where  A   U,  B   W .    Also,  S  contains   a
path P where V(P) = S. The path P is an alternating sequence of vertices from sets A and B,    otherwise,   P   will
be   disconnected.  If   P  begins   with  a  vertex  in A and ends with a vertex  in B, or vice versa, then  |A| = |B| while
if P  begins with  a vertex  in B  [resp.  A] and  ends also with  a vertex  in B [resp. A], then  |B| = |A| + 1 [resp. |A|
= |B| + 1].
(i)  For the case where |A| = |B| = r:
Claim:  r  2
Suppose  on  the  contrary  that   r < 2,  that   is,  r = 1.   Let  A  = {ui} and B  = {wj}.  Then,  IG [S] = IG [ui , wj] =
{ui , wj }  V (G). Hence, S is not a path-induced geodetic set, a contradiction. Therefore, r  2.

Moreover, the maximum number of vertices a subset of U can have is m while the maximum number of vertices
a subset of W can have is n.  Hence, it follows that  |A| = |B| = r  min{m, n}.  Therefore,  2  r  min{m, n}, which
gives us the pig-set S in (1).
(ii) For the case where |B| = |A| + 1:
Let |A| = s.  Then |B| = s + 1.
Claim:  s  2
Suppose  on the contrary that s < 2,  that is,  s = 1. Let A  = {ui} and B = {wk , wl}. Then,

IKm,n [S]   =  IKm,n  [{ui , wk , wl }]
 =   IKm,n [ui , wk ]   IKm,n [ui , wl ]   IKm,n[wk , wl]
 =  {ui , wk }  {ui , wl }  U
=  U  {wk , wl}  V (Km,n ),  since m, n > 2.

Hence, S is not a path-induced geodetic set, a contradiction. Therefore, s  2. Moreover, the  maximum  number
of  vertices  a subset  of U can have for this case is s = m while the maximum  number  of vertices a subset of W
can have is s = n  1, so that  s + 1 = n.  Hence, it follows that  s   min{m, n  1}.  Therefore, 2  s 
min{m, n 1}, which gives us the pig-set S in (2).
(iii)  For the case where |A| = |B| + 1, similar argument from the latter  case is applied.  Then, we will get the range
for c = |B|, that  is, 2  c  min{m1, n}, which gives us the pig-set S in (3).  

Theorem 3.19  For  all integers  m, n > 2,
pign (Km,n ) = 4.

Proof : Let  U  and  W  be partite sets  of  Km,n,  where  |U |  = m,  |W |  = n, m, n  > 2.   By  Lemma  3.18,  the  only
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path-induced geodetic  sets  of  Km,n are  (1)  S   =  A  B,   where  A     U, B    W  with  |A|  =  |B|  =  r, 2  r 
min{m, n}; (2) S  = A  B,  where A  U, B   W  with  |A| = s, |B| = s + 1, 2  s  min{m, n  1} and (3) S = A B,
where A  U, B  W with |A| = c + 1, |B| = c, 2  c  min{m  1, n}. Note that the cardinality
of the pig-set S in (1) is given by 4  |S|  2· min{m, n} while the pig-set S in (2) is given by 5  |S|  2 · min{m, n
 1} + 1.  Also, the  cardinality of the  pig-set S in (3) is given by 5  |S|  2 · min{m  1, n} + 1.  Hence,
pign(Km,n) = min{|S| : S is a pig-set of  Km,n} = 4. 

Corollary 3.20  Let m, n  > 2.  Then,  pign(Km,n) = g(Km,n) if and  only if min{m, n}  4.

Proof :   Let   pign(Km,n) = g(Km,n). Suppose   on  the  contrary  that min{m, n}  3, and  since m, n > 2, we have
min{m, n} = 3.  By Theorems 2.11 and  3.19,  g(Km,n)  = min{m, n, 4} and  pign(Km,n)  = 4,  respectively. Since
min{m, n} = 3,  it  follows that   g(Km,n)  = 3 while pign(Km,n)  = 4 for all m, n  > 2.  This  implies that  pign(Km,n )
 g(Km,n), a contradiction. Therefore, min{m, n}  4.

Conversely,  suppose  that  min{m, n} 4.   By Theorems  2.11 and  3.19,   g(Km,n)    =   min{m, n, 4}  and
pign(Km,n)  =  4,   respectively.   Since min{m, n}  4, it follows that g(Km,n) = 4 = pign(Km,n).  
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