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Abstract

This study introduces a new geodetic invariant, the path-induced geodetic number of a connected
simple graph G. We investigate its properties and characterize the path-induced geodetic sets of some com-
mon graphs. Also, the path-induced geodetic numbers of these graphs are determined.
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1 Introduction

The concept on path-induced geodetic numbers of graphs follows from the definition of geodetic
numbers of graphs introduced by Buckley and Harary in.

Let G be a connected simple nontrivial graph. The distance between two vertices uand vin G
denoted by dg (u, v), is the length of a shortest path joining u and v. A shortest u-v path is called a u-v
geodesic. For every two vertices u and v of G, the interval Ig [u, v] denotes all vertices lying in some u-v
geodesic. The geodetic closure Ig [S] is the union of intervals between all pairs of vertices from S, that is,
I [S]={lc [u,v]: u,v e S}. Ageodetic setof Gisaset Swith Ig [S]=V (G). The geodetic number g(G) of
agraph Gisthe minimum cardinality of a geodetic set.

The reseachers find it interesting to study the geodetic set S of G in which the subgraph induced
by the set S, denoted by <S>, is connected and contains a path P, where V (P) = S. Such sets are called path-
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induced geodetic sets. The researchers believe that the concept on path-induced geodetic numbers of
graphs can be applied in travel time saving, facility location, goods distribution, and other things in which this
concept will be of great help.

2 Preliminary Concepts and Results

Definition 2.1 2 The degree of a vertex vin G isthe number of edges incident with v and denoted by dege
(v). Avertexiscalled an end-vertex if its degree is 1.

Definition 2.2 2 The removal of a vertex v from a graph G results in the subgraph G —v consisting of all
vertices in G except v and all edges not incident with v.

Definition 2.3 2 A vertex x of a graph G is called a cut-vertex if the removal of x increases the number of
components of a graph G. We will use w(G) to describe the number of components a graph G has.

Definition 2.4 2 In a graph G, the neighborhood Ng (v) of a vertexv e V (G) is the set consisting of all
vertices u which are adjacent tov, that is, Ng(v) ={u € V (G)|luv € E(G)}. Avertex v in G isan extreme vertex if
the neighborhood Ng (v) of v induces a complete subgraph of G.

Definition 2.52 A nontrivial connected graph without cut-vertices is called non-separable graph. Otherwise,
such graphs are separable.

Definition 2.6 2 Let G be a nontrivial connected graph. A block B of G is a subgraph of G that is itself
nonseparable and which is maximal with respect to this property.

Definition 2.7 2 A spanning subgraph is a subgraph containing all the vertices of G. Ifthat subgraph is
apath, then it iscalled a spanning path of G.

Definition 2.8 Given a connected graph G and S c V (G), the set Sis called a path-induced geodetic set of G
denoted by pig-set, if it satisfies the following properties:

L Ig[S]=V(G).

2. (S) isconnected.

3. (S) contains a path P, whereV(P)=S.

The minimum cardinality of a path-induced geodetic set is called path-induced geodetic number of G, denoted
by pign(G). A path-induced geodetic set of smallest cardinality is called a path-induced geodetic basis of G.

Example 2.9 Consider the graph G in Figure 1 below.

Vg Us

U3 U3

Figure 1: Agraph G with pign(G) =4.
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Let S; ={va, v3, va}. Now, we have
le [S1] = lo[{v1, V3, va}]
|G [V1, V3] ) |G [V1 s V4] ) |G [V3, V4]
{Vl, Vo, V5, V3} ) {Vl, Vo, Vs, V4} ) {V3, V4}

= {V1, Vo, V3, V4, V5}
= V(G).

But (S;) is not connected. Hence, it is not a path-induced geodetic set. Sowe will add another vertex.
Let S ={v1, v2, v3,va}. Notethat Ig[S]=V (G). Moreover, <S> isconnected. Furthermore, <S> contains a

path P, whereV (P)=S. P can be the path [v1, v2, V3, V4] Or [V1, V2, V34, V3]. Consequently, Sisa pig-set of G
and by definition, pign(G) <|S|=4. Clearly, pign(G) = 1. Also, there is no set S of cardinality less than 4 for
which S is a pig-set. Hence, S = {v1, v, v3, V4} is a path-induced geodetic basis of G. That is, pign(G) = 4.

Proposition 2.10% Every extreme vertex is an end vertex of every geodesic containing it.

Theorem 2.11 3 For integers m, n>2, g(Kmn) =min{m, n, 4}.

Theorem 2.12 3 For any integer n> 2, g(Py) = 2.
3 Path-Induced Geodetic Numbers of Some Graphs:

First, we have to remark that not all connected graphs have path-induced geodetic set. To illustrate this,
let us have the following example.

Example 3.1 Consider the star Ssin Figure 2. Observe that the only geodetic sets of Sy are the sets S = {v1, vy,
v, Va} and S* = {vy, v, V3, Vs, V}. But, (S)isatotally disconnected graph, and so, not a path-induced geodetic
set. On the other hand, (S*)is S, itselfand hence, (S*) is connected. But, (S*) does not contain a path P
where V (P) = S*. Thus, S*is also not a path-induced geodetic set. That is, S4 does not have a pig-set.

(%]

v U2

541

U3

(21
Figure 2: Agraph without a pig-set

In general, the graph S, does not have a path-induced geodetic set, for all n > 3.

To this extent, we will give conditions for a connected simple graph G to have a path-induced
geodetic set. Let us have first these following results.

Theorem 3.2 Let G be a connected graph with cut-vertices. If Sc V (G) is a path-induced geodetic basis
of G and xis a cut-vertex of G, then every component of G —x contains a vertex in S.
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Proof : Let x be a cut-vertex of G and S be a path-induced geodetic basis of G. Let Cq, Cy, ..., Ck be
the components of G —x. It remainsto showthat each C; contains avertex inS. Suppose that there exists
acomponent, say Cy, of G —x that does not contain avertex inS. Further, let V (C1) ={ry, I, ..., i}, for some
integer t. Since S isa path-induced geodetic basis of G, there exist u,v €S such that r;,1 <i <t,liesin
some u-v geodesic. But this isimpossible since the walk we can make starting from vertex u and ends with
vertex v traversing vertex r; isgiven by [u=up, Us,...,X, ..., Fi, ..., X, ..., U =V], which is not a u-v geodesic.
Thisis a contradiction. Hence, C1 must contain a vertex in S. [ ]

Lemma 3.3 Every cut-vertex of a connected graph G belongs to every path- induced geodetic basis of G.

Proof : Let G be a connected graph and S be a path-induced geodetic basis of G. Suppose that x is a cut-vertex
of GandletCy, Cy, ..., Ck bethe components of G—x. By Theorem 3.2, S contains at least one vertex from
each C;, i =1,2,...,k. Sincethe subgraph (S)of G isconnected, it followsthatx e S. |

The following three results are useful in determining whether a graph G has a path-induced
geodetic set or none.

Theorem 3.4 Let G be a connected nontrivial graph of order n. If G contains a spanning path, then G has a
path-induced geodetic set.
Proof : Let G be a connected nontrivial graph of order nand let G contains aspanning path. Take S=V (G).

Then, Ig[S] =V (G). Moreover, (S) is the graph G itself and hence, connected. By assumption, G contains a
spanning path P, that is, V(P) =V (G) =S. Therefore, Sis a path-induced geodetic set of G. |

In view of Theorem 3.4, ifagraph G contains aspanning path, then we can automatically proceed
in finding the path-induced geodetic number of G

Theorem 3.5 Let G be a connected graph with cut-vertices. If G has a path-induced geodetic set, then
w(G —x) = 2 for every cut-vertex x of G.

Proof : Let G bea connected graph and let S bea path-induced geodetic basis of G. Let x € V(G) bea
cut-vertex. Suppose on the contrary thatw(G —x) > 3and let Cy, Cy, ..., Ci, k>3, bethe components of
G —x. By Lemma 3.3 and Theorem 3.2, x € S and S contains a vertex of C;forall i. Hence, S ={S; v
Sy u...uUS ux: S <Ci,k >3} Bydefinition, (S) contains a path P, whereV (P)=S. But this is
impossible to happen since the walk we can make traversing all vertices of (S) is given by [va1, Va2 , .. ., Vi,
X, Va1, Vo2, ..., Vas, X, ..., Vi, Vkz, - . ., Vit ], Vij € Si, which is not a path. This is a contradiction. Hence,
w(G-x)=2. |

The contrapositive of Theorem 3.5says that if there exists a cut-vertex x of G with w(G —x) > 3, then
G has no path-induced geodetic set.

Figure 3 shows an illustration of the situation described in Theorem 3.5. w(G —v, ) = 3 and therefore
does not allow G to have a path-induced geodetic set.
u1

V3 Uy

V

7
Figure 3: Agraph without a pig-set

G:
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Theorem 3.6 Let G be a connected graph with cut-vertices. If G has a path-induced geodetic set, then each
block of G contains at most 2 cut-vetices.

Proof : Let G be a connected graph with cut-vertices and let S be a path- induced geodetic basis of G.
Suppose there is a block B of G with cut-verticesvy, vz, vs. By Theorem 3.5, w(G —vj)=2,i=1, 2, 3. Observe
that there isacomponent of G —v;, say Bj, in which V (Bj) NV (B) = 0. By Theorem 3.2, each B; contains a
vertex inS. Byassumption, there isapath P that contains all the vertices in S. But to get from any vertex in
V (Bi) toa vertex x € V (B;), it needs to pass through vi. To get from vj to x, the path must pass through v;. Using
the same argument as in the proof of Theorem 3.5, we see that P needs to visit one of the cut-vertices vy, vy,
vz at least twice, which is a contradiction to P being a path. |

The contrapositive of Theorem 3.6 says that if there exists a block of G with three or more cut-
vertices, then G has no path-induced geodetic set.

Figure 4 shows an illustration of the situation described in Theorem 3.6. Block B has three cut-
vertices vi, v, v3 and therefore does not allow G to have a path-induced geodetic set.

Figure 4: Agraph without a I-set

From this point onwards, the graph G considered has path-induced geodetic set.
Remark 3.7 Since every path-induced geodetic set S is a geodetic set of G, we have g(G) < pign(G).

Now, since any geodetic set needs at least two vertices while the maximum number of vertices a path-
induced geodetic set can have isthe order of G, together with Remark 3.7, we have the following remark.

Remark 3.8 Let G be a connected nontrivial graph of order n. Then
2<9(G)<Lpign(G) <n.

Theorem 3.9 Let G be a connected graph and S be a path-induced geodetic basis of G. Then every extreme
vertex of G is contained in S.

Proof : Let G be a graph and S be a path-induced geodetic basis of G. Suppose on the contrary that there
exists an extreme vertex uof G which isnot contained in S. However, by definition of S, I [S] =V (G), so
there existx, y € Ssuch that u e Ig [, y]. Thisimplies that u lies in the x-y geodesic and by Proposition 2.10,

u must be an end-vertex, that is, u = xor u =y. But this is impossible to happen since xand y are in S, a
contradiction. Therefore, u € S. [ ]



Ruthlyn N. Villarante, et al. 201

Remark 3.10 Every vertex of a complete graph K, is an extreme vertex.

Theorem 3.11 For any natural number n, pign(K,) =n.

Proof : Let V (Kp) = {v1, V2, . .., vo} and let S be a path-induced geodetic basis of K, . By Remark 3.10 and
Theorem 3.9,v; €S Vi =1,2,...,n. That is,S={v1, vy, ...,vn}. Therefore, pign(K,) =n. |
The following theorem is one of the necessary conditions of a graph G of order n to have pign(G) = n.

Theorem 3.12 Let G be aconnected graph with |V (G)| = n. If every vertex of G is either an extreme vertex or
a cut-vertex of G, then pign(G) = n.

Proof : Let G be a graph with |V (G)| = nand S be a path-induced geodetic basis of G. Suppose v € V(G). If
v is an extreme vertex, then by Theorem 3.9,v € S. Also, if visa cut-vertex, then by Lemma3.3,v €S.
Hence, in either case, v € S. Therefore, S =V (G) and thus, pign(G) =n. |

Remark 3.13 Everyend-vertex ina graph G is an extreme vertex.
Theorem 3.14 Let G =Py, . Then pign(G) =n, for all n> 2.

Proof: Let G = P, and V (G) ={v1, Vv, ...,Vn}, as shown in Figure 5.

D D N N
Vi Vg Uz Up-3 Upoy Uy

Figure 5: Apath P,of ordern,n>2

Let S be a path-induced geodetic basis of P,. Note that v; and v, are end-vertices and by Remark 3.13, vy, v2

are extreme vertices of P,. Also, verticesvy, .. ., Va1 are cut-vertices sincew(P,—vi)=2foreachi=2,3, ...,
n — 1. Hence, every vertex of P, is either an extreme vertex or a cut-vertex. By Theorem 3.12,
pign(Py) =n. |

The following result is immediate:
Corollary 3.15 If n =2, then pign(Py) = g(Pp).

The next theorem characterizes those connected nontrivial graphs G for which the path-induced
geodetic number is 2.

Theorem 3.16 Let G be a connected nontrivial graph. Then, pign(G) = 2 if and only if G = P».

Proof : Let S = {u, v} be a path-induced geodetic basis of G. Suppose G = P,. Then there existsx <V (G) such

that x =uandx =v. But,x ¢ Ig[u, v] since ds (u,Vv) =dg (u, v) = 1. Thus, Sisnota path-induced geodetic basis

of G, a contradiction. Hence, G = P,. Conversely, If G = Py, then pign(G) =2 by Theorem 3.14. |
The next theorem gives the formula on how to get pign(C,) for n> 3.

Theorem 3.17 Let G = C,. Then forn >3,

nT+1+1, if nis odd

pign(Cy ) =
" %+1, if niscven.
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Proof : LetG=Cnand V (G) ={v1, V2, ..., vh}. Consider the following cases for the order n of graph G

V2k+1

U1
V2k-1
V2k-1
v, Vg—
’Uk+2 kﬂ\—/ k

Uk+1 Uk Uk+1

Figure 6: Cycle Cn of order n

Case 1: When nisodd, say n =2k + 1, for some integer k.

For a cycle C, of order n = 2k+1, it is the union of two paths[vo1, V1, V2, ..., Vks1] and [vk+1,
Vk+2, ..., Voke1] Of lengths k+1 and k, respectively. LetS={vok+1,V1,V2, ..., Vks1 }. Observethat Ig[S]
contains the vertices on [Vk+1 , Vks2 , . . ., Voke1 ] Where {Vks1 , Vks2 , . . ., Vok+1 } = lg [Vke1 , Voke1 . Thus,

I [S] =V (G). Moreover, (S) is connected and contains a path P whereV (P ) =S. In fact, P is(S) itself. Thus,
S is a pig-set. Moreover, there is no pig-set of cardinality less than that of S. Therefore,

1
+1.

n+
pign(G) =S| ={v1, V2, ..., Vie1 }U{Vn =V H=(k+ 1) +1=

Case 2: When nis even, say n = 2k, for some integer k.

Observe that paths [v1, V2, ..., Vk+1] and [vks1 , Vk+2, - .., V1] are of the same length. Hence, Ig [v1, Vk+1]=
V(G). That is, the minimum number of vertices for a geodetic set S where (S) is connected and contains a
path Pwith V (P) =Sisattained if S= {v1, vo, ..., Vk+1 } Or S={Vk+1, Vks2, . .., V2K, v1 }. Therefore, pign(G)

n
=|S|=|{V11V2,---,Vk+]_}|=k+]_:51_ .

Lemma3.18 For all integers m,n > 2, let U = {us, uy, ..., un} andW ={wi, wo, . .., Wy} be partite sets
of Kmn. Asubset Sof V(Kmn) is apath-induced geodetic set of Ky n if and only if S is any of the following:
1 S =AuUB, where A c U,B < W with |A] = |B|] =1, 2<r<min{m, n};

2. S =AuUB, where A cU,B cW with |A| =5, |B| =s+1, 2<s<min{m,n-1};
3 S =AuUB, where A cU,B W with |A] =c+1,|B| =¢,2<c<min{m-1, n}.

Proof: (<) Let G = Kpp and let U = {ug, Uy, ...,un} and W={wy, Wy, ..., wn} be partite sets
of G, wherem,n>2.

(1) Let S = AuUB,where Ac U,B < V with |A] =|B| =12 < r < min{m,n}. Without loss of generality,
assume thatA={uy Uz, ..., urfand B ={wy, w, ..., w}. Note that Ig [uj, uj] =Wforanyu;, uj € A, i# ],
since [ui, w, uj] is a uj -uj geodesicin G forallwe W. Also, Ig [wi, w] =U forany wq, wy € W,k = I, since

[wk, u, wi] is a wg - wy geodesic in G for all u € U. Thus, Ig [S] = V (G). Since every vertex in A is
adjacent to every vertex in B, (S) is connected. Moreover, (S) contains a path P where V (P) =S. The path P
can be the path [ug, wg, ug, Wo, ..., Ur, W]. Therefore, S is a path-induced geodetic set of G.



Ruthlyn N. Villarante, et al. 203

(2) Let S=AuUB, where AcU, B cW with |A] =s, |B]=s+1,2 <s < min{m,n -1}. Without loss of
generality, assume thatA={ug, Uy, ..., uUs}and B ={wi, Wy, ..., Ws, Ws+1 }. From the proof of (1), Ig [ui, uj]
=W for any two distinct verticesu;, u; € Aand Ig [wk, wi] = U for any two distinct vertices we, wi € W. Hence,
it follows that 1 [S] = V (G). Also, (S) is connected since every vertex in A is adjacent to every vertex in B.

Moreover, (S) containsa path P whereV (P)=S. The path P can be the path [wy, us, Wo, Uz, . . ., Ws, Us , Ws1].

Therefore, S is apath-induced geodetic set of G.
(3) Let S=AUB, where AcU, B cWwith |A| =c+1, |B|=c¢, 2 <c < min{m -1, n}. Without loss

of generality, assume thatA = {ug, Uy, ..., Uc Uc+1 } and B = {wy, wo, ..., Wc}. Following similar
argument at the proof of (2), I [S] =V (G), (S) isconnected and (S) containsa path P where V(P) = S. The
path P can be the path [ug, wy, Uz, Wy, ..., Ug, We, Uct1 ]. Consequently, S isa path-induced geodetic set
of G

(=) Let S be a path-induced geodetic set of G. By definition, (S) is connected. Hence, S must
contain avertex in Uandavertex in W, that is,S = AuUB, where A <U, B <W. Also, (S) contains a
path P where V(P) = S. The path P is an alternating sequence of vertices from sets Aand B, otherwise, P will
be disconnected. If P begins with a vertex in A and ends with a vertex in B, or vice versa, then |A| =|B|while
if P begins with avertex in B [resp. A]and endsalsowith avertex in B [resp. A], then |B|=|A|+ 1 [resp. |A|
=[B|+1].
(i) For the case where |A|=|B|=r:
Claim: r>2
Suppose on the contrary that r<2, that is, r=1. Let A ={uj}andB ={wj}. Then, Ig [S]=Ic [ui, Wj] =

{ui, wj } =V (G). Hence, S is not a path-induced geodetic set, a contradiction. Therefore, r> 2.

Moreover, the maximum number of verticesasubset of U can have is m while the maximum number of vertices
a subset of W can have is n. Hence, it follows that |A|=|B|=r < min{m, n}. Therefore, 2 <r <min{m, n}, which
gives us the pig-set Sin (1).
(ii) For the case where |B| = |A| + 1:
Let|A|=s. Then|B|=s+1.
Claim: s>2
Suppose on the contrarythats< 2, thatis, s=1. LetA = {ui}and B = {wk, w;}. Then,
Ikmn [S] = lkmn [{Ui, Wi, Wi }]
Ikmn Ui, W] W Tkmn [Ui , Wi T O Tkmn[wic, wi]
{ui, w}u{ui,w}uu
= Uu{wi,wi}#V (Kmn), sincem, n>2.
Hence, Sisnot a path-induced geodetic set, a contradiction. Therefore, s > 2. Moreover, the maximum number
of vertices a subset of U can have for this case iss = m while the maximum number of vertices a subset of W
can haveiss=n-1,sothat s+ 1 =n. Hence, it follows that s < min{m, n — 1}. Therefore, 2 < s<
min{m, n—1}, which gives us the pig-set Sin (2).
(iii) For the case where |A|=|B| + 1, similar argument from the latter case isapplied. Then, we will get the range
for c=|B|, that is, 2 <c <min{m-1, n}, which gives us the pig-set Sin (3). |

Theorem 3.19 For all integers m, n> 2,
pign (Kmn)=4.
Proof : Let U and W be partite sets of Kmpn, where [U| =m, |W| =n,m,n >2. By Lemma 3.18, the only
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path-induced geodetic sets of Kmpare (1) S = AuUB, where A ¢ U,B ¢ W with |A] = |B| =r1,2<r<
min{m, n}; (2) S =AuUB, whereAc U,B c W with |A|=5s,|[B|=s+1,2<s<min{m,n—-1}and (3)S=AUB,
where A c U, B c Wwith [A|=c + 1, |B|=¢, 2 <c<min{m - 1, n}. Note that the cardinality
of the pig-set Sin (1) is given by 4 <|S| < 2- min{m, n} while the pig-set S in (2) is given by 5 <|S|<2 - min{m, n
— 1} + 1. Also, the cardinality of the pig-set S in (3) isgiven by 5 <|S| <2 - min{m — 1, n} + 1. Hence,
pign(Kmp) = min{|S| : Sis a pig-set of Kmn}=4. |

Corollary 3.20 Letm,n >2. Then, pign(Kmn) = g(Kmp) if and only if min{m, n} > 4.

Proof: Let pign(Kmn)=9(Kmn). Suppose on the contrary that min{m, n} <3, and sincem, n> 2, we have
min{m, n} = 3. By Theorems 2.11and 3.19, g(Kmn) = min{m, n, 4} and pign(Kmn) =4, respectively. Since
min{m, n} =3, it follows that g(Kmn) =3 while pign(Kmn) =4 forallm,n >2. This implies that pign(Kmn)
# g(Kmn), a contradiction. Therefore, min{m, n} >4.

Conversely, suppose that min{m,n}>4. ByTheorems 2.11and 3.19, g(Kmn) = min{m, n, 4} and
pign(Kmpn) = 4, respectively. Since min{m, n} > 4, it follows that g(Km n) = 4 = pign(Kmn). |
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