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Abstract

In this Paper, we introduce the second, third, fourth and fifth multiplicative arithmetic-geometric indices
of a molecular graph. We compute the fifth multiplicative arithmetic-geometric index of line graphs of subdivision
graphs of 2D-lattice, nanotube and nanotorus of  TUC4C8[p, q].
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1.  Introduction

Let G be a finite, simple connected graph with a vertex set V(G) and an edge set E(G). The degree
dG(v) of a vertex v is the number of vertices adjacent to v. The line graph L(G) of a graph G is the graph whose
vertex set corresponds to the edges of G such that two vertices of L(G) are adjacent if the corresponding edges
of G are adjacent. The subdivision graph S(G) of G is the graph obtained from G by replacing each of its edges
by a path of length two. We refer to [1, 2] for undefined term and notation.

A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of
this graph represents an atom of the molecule and its edges to the bonds between atoms. A topological index is
a numeric quantity from structural graph of a molecule. These indices are useful for establishing correlation
between the structures of a molecular compound and its physico-chemical properties.

Very recently Kulli3 introduced the first multiplicative arithmetic-geometric index of a graph G and it is
defined as
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Many other multiplicative indices were studied, for example, in4,5,6,7,8,9,10,11.
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Motivated by the definition of the first multiplicative arithmetic-geometric index and by previous
research on topological indices, we propose the second, third, fourth and fifth multiplicative arithmetic-geometric
indices of a graph as follows:

The second multiplicative arithmetic-geometric index of a graph G is defined as
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where the number nu of vertices of G lying closer to the vertex u than to the vertex v for the edge uv of a
graph G.

The third multiplicative arithmetic-geometric index of a graph G is defined as
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where the number mu of edges of G lying closer to the vertex u than to the vertex v for the edge uv of a graph G.
The fourth multiplicative arithmetic-geometric index of a graph G is defined as
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where the number (u) is the eccentricity of vertex u.
The fifth multiplicative arithmetic-geometric index of a graph G is defined as
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We need the following results.

Lemma 11. Let G be a (p, q) graph. Then L(G) has q vertices and  2

1

1
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i

d u q  edges.

Lemma 21.  Let G be a (p, q) graph. Then S(G) has p+q vertices and 2q edges.
In this paper, we compute the fifth multiplicative arithmetic-geometric index of line graphs of subdivision

graphs of 2D-lattice, nanotube and nanotorus of TUC4C8[p, q].

2. 2 D-latice, nanotube and nanotorus of TUC4C8[p, q]
We consider the graph of 2D-lattice, manotube and nanotorus of TUC4C8[p, q] where p and q denote

the number of squares in a row and the number of rows of squares respectively. These graphs are shown in
Figure 1

G1 H1 K1
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(a)                           (b)                                            (c)
                         Figure 1

(a) 2D-lattice of TUC4C8[4, 2]                (b) TUC4C8[4,2] nanotube                        (c) TUC4C8 [4, 2] nanotorus
By algebraic method, we get |V(G1 )| = 4pq, |E(G1)| = 6pq  – p – q; |V(H1 )| = 4pq, |E(H1 )| = 6pq  – p; |V(K1)| = 4pq,
|E(K1 )| = 6pq.

3. Results for 2D-lattice of TUC4C8[p, q]

The line graph of the subdivision graph of 2D-lattice of TUC4C8[p, q] is shown in Figure 2(b).

(a) (b)
Figure 2

(a) subdivision graph of (b) line graph of the subdivision
2D-lattice of TUC4C8[4,2] graph of TUC4C8 [p, q]

Theorem 1. Let G be the line graph of the subdivision graph of 2D-lattice of TUC4C8[p, q]. Then

AG5II(G)
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if p>1, q=1.

Proof: The 2D - lattice of TUC4C8[p, q] is a graph with 4pq vertices and 6pq – p – q edges. By Lemma 2, the
subdivision graph of  2D-lattice of  TUC4C8[p, q] is a graph with 10 pq – p – q   vertices and 2(6 pq – p – q) edges.
Thus by Lemma 1, G has 2(6 pq – p – q) vertices and 18pq – 5p – 5q edges. It is easy to see that the vertices of
G are either of degree 2 or 3, see Figure 2(b). Therefore we have partition of the edge set of G as follows.

Table 1. Edge partition of G with p>1 and q>1

SG(u), SG(v)\uvE(G) (4, 4) (4, 5) (5, 5) (5, 8) (8, 9) (9, 9)

Number of edges 4 8 2(p+q–4) 4(p+q–2) 8(p+q–2) 2(9pq+10) – 19(p+q)

Table 2. Edge partition of G with p>1 and q = 1

SG(u), SG(v)\uvE(G) (4, 4) (4, 5) (5, 5) (5, 8) (8, 8) (8, 9) (9, 9)

Number of edges 6 4 2(p–2) 4(p–1) 2(p–1) 4(p–1) p–1



Case 1. Suppose p >1 and q >1.
By algebraic method, we obtain |V4|=8, |V5|=4(p+q – 2), |V8|=4(p+q – 2) and |V9|=2(6pq – 5p–5q + 4).

Thus the edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given in
Table 1.

To compute AG5II(G), we see that
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Case 2. Suppose p>1 and q = 1.

The edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given
in Table 2.

 
     

    
5

2


  G G

uv E G G G

S u S v
AG II G

S u S v

    4 2 2 4 164 4 4 5 5 5 5 8
2 4 4 2 4 5 2 5 5 2 5 8

p p 
                            

      2 1 4 1 18 8 8 9 9 9
2 8 8 2 8 9 2 9 9

p p p  
       

              

 
     

 
   

 
  

4 4 1 4 1
6 2 2 2 1 19 13 171 1 1 1

4 5 4 10 12 2

p p
p p p

 
                  

    

    4 4 1 4 19 13 17 .
4 5 4 10 12 2

p p 
            

    

4. Results for TUC4C8[p, q] nanotube
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The line graph of the subdivision graph of TUC4C8[p, q] nanotube is shown in Figure 3(b).

(a) (b)
Figure 3

(a) Subdivision graph of                                         (b) line graph of subdivision graph of
TUC4C8 [4, 2] nanotube                                        TUC4C8 [4, 2] nanotube

Theorem 2. Let H be the line graph of the subdivision graph of TUC4C8[p, q] nanotube. Then

AG5II(H) = 
 4 813 17 ,
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 if p>1 and q=1.

Proof: The TUC4C8[p, q] nanotube is a graph with 4pq vertices and 6pq – p edges. By Lemma 2, the
subdivision graph of TUC4C8[p, q] nanotube is a graph with 10pq – p vertices and 12pq – 2p edges. Thus by
Lemma 1, H has 12pq – 2p vertices and 18pq – 5p edges. We see that in H, there are 4p vertices, are of degree 2
and remaining all vertices are of degree 3. Therefore we have partition of the edge set of H as follows:

Table 3. Edge partition of H with p>1 and q>1.
   SH(u), SH(v)\uvE(H) (5, 5) (5, 8) (8, 9) (9, 9)

  Number of edges 2p 4p 8p 18pq – 19p

Table 4. Edge partition of H with p>1 and q = 1
   SH(u), SH(v)\uvE(H) (5, 5) (5, 8) (8, 8) (8, 9) (9, 9)

   Number of edges 2p 4p 2p 4p p

Case 1. Suppose p>1 and q>1.
By algebraic method, we obtain |V5| = 4p, |V8|= 4p and |V9|= 2(6pq – 5p) in H. Thus the edge partition

based on the degree sum of neighbor vertices of each vertex is obtained, as given in Table 3.
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=  
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Case 2. Suppose p>1 and q=1.

The edge partition based on the degree sum of neighbor vertices of each vertex is obtained, as given
Table 4.
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5 Results for TUC4C8[p, q] nanotorus
The line graph of the subdivision graph of TUC4C8[p, q] nanotorus is shown in Figure 4(b).

(a) (b)
Figure 4

(a) subdivision graph of                                    (b) line graph of subdivision graph of
TUC4C8[4,2] nanotorus                                      TUC4C8[4,2] nanotorus.

Theorem 3. Let K be the line graph of the subdivision graph of TUC4C8[p, q] nanotorus. Then
AG5II(K) = 1.
Proof: The graph of TUC4C8[p, q] nanotorus has  4pq vertices and 6pq edges. Then by Lemma 2, the

subdivision graph of TUC4C8[p, q] nanotorus is a graph with 10pq vertices and 12pq edges. Thus by Lemma 1,
K has 12pq vertices and 18pq edges. We see easily that in K, |V9|= 12pq and we have edge partition based on the
degree sum of neighbor vertices of each vertex, as given in Table 5.

Table 5. Edge partition of K.
SK(u), SK(v)\uvE(K) (9, 9)

Number of edges 18pq
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