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Abstract

Unsteady two-dimensional laminar radiative convection flow of an incompressible, electrically
conducting micropolar fluid past a moving semi-infinite vertical porous plate in the presence of magnetic field
is studied. The effects of material parameters on the velocity and temperature fields are investigated. The
Rosseland approximation is used to describe the radiative heat flux in the energy equation. The micropolar fluid
is considered to be gray, absorbing-emitting but non-scattering optically thick medium. Numerical results of
velocity field and temperature distribution are discussed with the help of figures, while skin-friction and rate of
heat transfer are discussed by the use of tables. It is observed that when radiation parameter increases, the
velocity increases and temperature decreases, whereas an increase in Grashof number or magnetic parameter
decreases the velocity.
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Nomenclature :

,u v  dimensional components of velocities along x
and y -directions

,u v non-dimensional components of  velocities
along x  and y -directions

x , ydimensional  spatial  coordi-nates   along  and
normal to the plate

x,y non-dimensional spatial co-ordinates along and
normal to the plate

g acceleration due to gravity
T ' dimensional temperature of the fluid
T non-dimensional temperature of the fluid
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 T temperature of the free stream

 '
wT temperature of the wall

B0 uniform magnetic field
m' dimensional exponential index
m non-dimensional exponential index
t' dimensional time
t non-dimensional time
j non - dimensional micro-inertia
j' dimensional micro-inertia
k effective thermal conduct-ivity
kc absorption coefficient
q"' non-uniform heat generation /absorption

 
rq radiative heat flux in  y'- direction

 U free stream velocity

 
pU  dimensional velocity of the plate

Up non- dimensional velocity of the plate
A real positive constant
V0 scale of suction velocity
U0 scale of free stream velocity
Pr Prandtl number
Gr Grashof number
R radiation parameter
A* space dependent heat source/ sink parameter
B* temperature dependent heat source/sink

parameter
Greek symbols:
' dimensional microrotation variable
 non-dimensional microrotation variable
' dimensional spin gradient viscosity
 non-dimensional spin gradient viscosity
 density of the fluid
r coefficient of volumetric expansion of the fluid

  kinematic viscosity of the fluid

 
r kinematic  rotational viscosity of the fluid

 electrical conductivity of the fluid
 effective thermal diffusivity of the fluid

 perturbation parameter (<<1)
s Stefan Boltzmann constant
 dynamic viscosity
   microratation viscosity

1.  Introduction

1. A number of fluids exhibit a non-Newtonian
fluid behaviour. Physically, non-Newtonian fluids
represent fluids consisting of randomly oriented
particles suspended in a viscous medium. Eringen1

has discussed theory of micropolar fluids which takes
into account the inertial characteristics of the
substructure particles, which are allowed to undergo
rotation. A thorough exposition of the continuum
mechanics foundation of micromorphic. and micropolar
fluids has been provided by Ariman et. al.2  The study
of unsteady flow and heat transfer of an electrically
conducting, micropolar fluid past a porous plate has
attracted the interest of many investigators in view of
its applications in many engineering problems such
as colloidal solutions, fluids with additives, animal
blood, suspension solutions, oil exploration, thermal
energy extractions, nuclear reactors, MHD generators
and the boundary layer control in the field of
aerodynamics Lucaszewicz3. Raptis4  studied
numerically, the steady two-dimensional flow of a
micropolar fluid past a continuously moving plate
embedded in a porous medium in presence of thermal
radiation. Kim5,6 obtained solution for  two-
dimensional transient convective heat transfer of an
electrically conducting viscous fluid past a semi-
infinite vertical porous moving plate with variable
suction in the presence of magnetic field and unsteady
convection flow of micropolar fluids past a vertical
porous plate embedded in a porous medium
respectively. Kim and Fedorov7 investigated the case
of mixed convection flow of a micropolar fluid past a
semi-infinite steadily moving porous plate with
varying suction velocity normal to the plate in the
presence of thermal radiation considering a gray,
absorbing-emitting but non-scattering optically thick
medium. In the present paper, it is proposed to study
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the heat and momentum transfer in radiative
convective flow of an electrically conducting,
incompressible, micropolar fluid along an infinite
vertical porous plate moving upward with uniform
velocity in the presence of uniform magnetic field and
non-uniform heat source for the better application of
the model proposed by Kim and Fedorov7. Effect of
suction/injection on the flow of a micropolar fluid past
a continuously moving plate in the presence of
radiation is studied by Makined and Sibanda8. Effect
of chemical reaction and thermal radiation on heat and
mass transfer flow of MHD micropolar fluid in a
rotating frame is studied by K.Das9. Bakr and Ali10

has discussed  Oscillatory free convection of a
micropolar rotating fluid on a vertical plate with variable
heat flux and thermal radiation.

2. Formulation of the problem :
Let us consider a two-dimensional, laminar,

unsteady flow of an incompressible, homogeneous,
electrically conducting micropolar fluid past a semi-
infinite, vertical porous plate moving steadily with
velocity Up and subjected to a uniform magnetic field
and thermal radiation field. The x'-axis is taken along
the vertical plate in the upward direction and y'-axis
normal to the plate. The acceleration due to gravity g
is in the direction opposite to x'- coordinate. It is
assumed that the size of holes in the porous plate is
much larger than the characteristic microscopic length
scale of the micropolar fluid to simplify formulation of
the boundary conditions. Also, due to semi-infinite
plane surface assumption, the flow variables are
functions of normal distance y' and the time t'  only.
The uniform magnetic field of small magnetic Reynolds
number acts transversely to the direction of the flow.
Since the magnetic Reynolds number is small, the
induced magnetic field is neglected. In the physics of
flow, the effect of non-uniform heat generation and
radiation on heat transfer phenomenon is taken into
account, while viscous dissipation and Ohmic heati is
ignored. Further, Boussinesq approximation is
followed, so that density differences are only
manifested in the thermal buoyancy terms in the liner
momentum equation. Under the present configuration,
the equations governing the flow are:

Equation of continuity
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Equation of angular momentum-
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Equation of energy-
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The boundary conditions for  the velocity,
microrotation and temperature fields are:
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The symbols are defined in nomenclature.
       By using the Rosseland approximation, the
radiative heat flux in the  y'-direction is expressed as-
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where s is the Stefan-Boltzmann constant and kc is
the mean absorption coefficient. For sufficient small
temperature differences within the flow, the radiative
heat flux described in (6) can be linearized by expanding
T ' 4, neglecting higher order terms, into Taylor series

about  T  to give

 4 3 44 3T T T T                                      (7)

The spin-gradient viscosity ', which defines
the relationship between the coefficient of viscosity



and micro-inertia, is given by:
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Also q'" is the space and temperature dependent
internal heat generation/absorption (non-uniform heat
source/sink Abel et. al. [2007]), which can be expressed
in simplest form as
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where A* and B* are parameters of space and
temperature dependent internal heat generation /
absorption.  It is to be noted A*< 0 and B*< 0

correspond to internal heat generation, while A*>0

and B*>0 correspond to internal heat absorption.
It should be noted that by using the

Rosseland approximation to describe the radiative heat
flux in energy equation, limits our analysis to absorbing-
emitting but non-scattering optically thick medium.
The microrotation variable ', which describes its
relationship with the surface stress in the relation
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, is shown in boundary condition (5).

The parameter n is the number between 0 and
1 that relates the micro-gyration vector to the shear
stress. The value  n = 0 corresponds to the case,
where the particle density is sufficiently large so that
microelements close to the wall are unable to rotate.
The value n= 0.5  is indicative of week concentrations,
while n = 1 represents turbulent boundary layers see
Kim and Fedorov7.
         The equation (1) implies that the velocity
component v'  is either constant or a function of t
only.  Therefore the suction velocity v'  can be taken
as-
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where V0  is real positive constant,  <<1,
A is small and m is a positive parameter.  The negative
sign indicates that the suction acts towards the wall.
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In view of (6) - (10), the governing Eqs. (1) –

(4), in non-dimensional form are :
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The boundary conditions (5) in non-dimensional form
are:
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3. Solution of the problem:
In order to reduce the above stated system

of partial differential equations to a system of ordinary
differential equations in non- dimensional form, we
perform an asymptotic analysis by representing the
linear velocity, microrotation and temperature as:
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       Substituting (15)–(17) into Eqs.(11)–(13),

neglecting the terms of   2O  , we obtain following

pairs of ordinary differential equations:
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Substituting (15) – (17) into the boundary
conditions (14), the corresponding boundary
conditions are given by:
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            The solution of Eqs. (18) – (23) satisfying the
boundary conditions (24) is given by:
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4. Skin -friction and rate of heat transfer :

After obtaining the stream wise velocity,
micro-rotation and temperature in the boundary layer,
the quantity of physical interest is the skin-friction
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coefficient at the porous wall, which is given by
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We can also calculate the heat transfer
coefficient at the wall in terms of Nusselt number as
follow:
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5. Verification of problem through simple cases:

(i) If the influence of uniform magnetic field and the
supply of heat through variable heat source is not
considered, the results of the study are exactly
same as obtained by Kim and Fedorov7.

(ii) If the supply of variable heat source is remove
and the presence of uniform magnetic field is
adjusted as flow in the porous medium, the results
of the study are similar to those of Kim6.

(iii) If the supply of the heat by means of variable heat
source is removed, the results are similar to those
obtained by Kim5.

6. Results and Discussion

Fig. 1 shows variations in the fluid velocity
(u) against span wise coordinate (y) for different
numerical values of the ratio of microrotation viscosity
and dynamic viscosity  at fixed values of Prandtl
number (Pr), radiation parameter (R), maganetic
parameter (M), Grashof number (Gr), space and
temperature dependent internal heat generation/
absorption parameters A* and B*. For numerical
computation these values are chosen to be Pr=0.71,
R=1.0, M=1.0,  Gr=2.0,  A*=0.3  and B*=0.3.

It is observed that an increase in the ratio of
microrotation and dynamic viscosity () enhances the
velocity of the micropolar fluid. In the vicinity of the
plate, the velocity increases more rapidly and after
attaining a maximum magnitude at y=0.6
approximately, it decreases and becomes asymptotic
to horizontal axis and ultimately dies away.

Fig. 2 illustrates variations in the fluid velocity
(u) against span wise coordinate (y) for different
numerical values of magnetic parameter (M) at
Pr=0.71, =0.4, Gr=2.0,  A*=0.3  and B*=0.3
choosing R=1.0 and  R=1.5. It is demonstrated that
increase in magnetic parameter decreases the velocity,
i.e., retards the flow for cooling case (Gr>0) i.e., heat
removal from the surface. This is an important
controlling mechanism in nuclear energy system heat
transfer, where momentum development can be
reduced in porous plate flow regimes by enhancing
the magnetic field. Obviously an increase in the
radiation parameter increases the velocity. In fact, due
to increase in radiation, the medium resistance is
lowered and this increases the momentum development
of the flow regime, there by enhancing the velocity.

Fig. 3 shows the variations in the velocity
(u) against span wise coordinate (y) for different
numerical values of Grashof number (Gr). Two
different cases, namely, cooling of the plate (Gr>0)
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and heating of the plate (Gr<0)  are chosen. To
observe these effects, we choose Pr=0.71, R=1.0,
M=1.0, =0.4,  A*=0.3  and B*=0.3. It is observed
that an increase in Grashof number (Gr) increases the
velocity in cooling case of the plate while reverse effect
is noted in heating case. Hence, again we note that
buoyancy parameter (Gr), has  dominant effect in
escalating transient velocity of the fluid.

Fig. 4 shows variations in the velocity (u)
against span wise coordinate (y) for different numerical
values of space dependent heat source/sink parameter
A*  at Pr=0.71, R=1.0, =0.4,  Gr=2.0, M=1.0

and B*=0.3. It is observed that the velocity of the
fluid decreases for space dependent heat source
parameter but increases for space dependent heat sink
parameter.

Fig. 5 illustrates variations in the velocity (u)
against span wise coordinate (y) for different numerical
values of temperature dependent heat source/sink
parameter B* at Pr=0.71, R=1.0, =0.4,   Gr=2.0,

M=1.0 and  A*=0.3.  It is observed that the velocity
of the fluid increases for temperature dependent heat
source parameter. As expected, the temperature
dependent heat source favors the velocity of the fluid
while space dependent heat source apposes the
velocity.
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Fig. 6 shows variations in the angular velocity
() against span wise coordinate (y) for different
numerical values of the ratio of microrotation viscosity
and dynamic viscosity    at Pr=0.71, R=1.0,
Gr=2.0,  M=1.0, A*=0.3 and B*=0.3. It is observed
that the angular velocity of the fluid decreases with
increase in the ratio of microrotation and dynamic
viscosity. In the boundary condition at the plate, the
angular velocity is negatively related to the rate of
change of velocity, i.e., shear stress at the plate. Hence,
effects of various parameters on the fluid velocity and
the angular velocity are observed in reverse order.

Fig. 7 illustrates variations in the angular
velocity () against span wise coordinate (y) for
different numerical values of magnetic parameter (M)
at Pr=0.71, =0.4, Gr=2.0,  A*=3.0 and B*=3.0
choosing  R=1.0  and R=1.5. Obviously, an increase
in the radiation parameter decreases the angular
velocity. The physics behind this phenomenon is that
due to an increase in radiation, the microrotation of
the micropolar fluid particles becomes less intrusive
so that the flow regime becomes more dense, which in
turn retards the angular velocity.

7. Conclusions

The equations governing the flow of an
unsteady incompressible micro-polar fluid past a semi-
infinite vertical porous plate with variable suction under
the influence of uniform magnetic field and variable
heat source are solved using regular perturbation
technique. The solutions are presented in (25)-(30) and
the expressions for skin-friction and rate of heat
transfer are presented in (31)-(32) respectively. To
illustrate the details of the flow and heat transfer
characteristics and their dependence on material
parameters, the numerical results are presented in the
form of figures for specific values of flow parameters.
The study concludes the following results:
 An increase in the ratio of microrotation and

dynamic viscosity () enhances the velocity of
the micropolar fluid, while decreases  the  angular
velocity.

 An increase in the radiation parameter increases
the velocity but decreases angular velocity, while
an increase in magnetic parameter decreases the
velocity but increases angular velocity.

 The velocity of the fluid increases with an increase
in temperature dependent heat  source  parameter,
while angular velocity decreases.

7. Appendix
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