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Abstract

In this paper, the effect of hall on the peristaltic pumping of a Newtonian fluid in a two dimensional
channel under the assumption of long wavelength is investigated. A closed form solutions are obtained for axial
velocity and pressure gradient. The effects of various emerging parameters on the pressure gradient, time-
averaged volume flow rate and frictional force are discussed with the aid of graphs.
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1. Introduction

The study of the mechanism of peristalsis
in both mechanical and physiological situations has
recently become the object of scientific research, since
the first investigation of Latham5. Several theoretical
and experimental attempts have been made to
understand peristaltic action in different situations.  A
review of much of the early literature is presented in
an article by Jaffrin and Shapiro4. A summary of most
of the experimental and theoretical investigations
reported with details of the geometry, fluid Reynolds

number, wavelength parameter wave amplitude
parameter  and wave shape has been given by
Srivastava and Srivastava11.

The magnetohydrodynamic (MHD) flow of a
fluid in a channel with peristalsis is of interest in
connection with certain flow problems of the movement
of conductive physiological fluids, (e.g., the blood flow
in arteries). The effect of magnetic field on blood flow
was studied by Sud et al.12 and it is observed that the
effect of suitable magnetic field accelerates the speed
of blood. Srivastava and Agrawal10 and Prasad and
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Ramacharyulu8 by considering the blood as an
electrically conducting fluid and constitutes a
suspension of red cell in plasma. Also, Agrawal and
Anwaruddin1 studied the effect of magnetic field on
the peristaltic flow of blood using long wavelength
approximation method and observed for the flow of
blood in ar ter ies with ar ter ial stenosis or
arteriosclerosis, that the influence of magnetic field
may be utilized as blood pump in carrying out cardiac
operations.  Li et al.6 have used an impulsive magnetic
field in the combined therapy of patients with stone
fragments in the upper urinary tract. It was found that
the impulsive Magnetic field (IMF) activates the
impulsive activity of the ureteral smooth muscles in
100% of cases. Mekheimer7 studied the peristaltic
transport of blood under effect of a magnetic field in
non uniform channels. Hayat et al.3 have first
investigated the Hall effects on the peristaltic flow of
a Maxwell fluid trough a porous medium in channel.
Recently, Eldabe2 have studied the Hall Effect on
peristaltic flow of third order fluid in a porous medium
with heat and mass transfer.

In view of these, we studied the effect of hall
on the peristaltic flow of a Newtonian fluid in a two
dimensional channel under the assumption of long
wavelength. A closed form solution is obtained for
axial velocity and pressure gradient. The effects of
various emerging parameters on the pressure gradient,
time-averaged volume flow rate and frictional force
are discussed with the aid of graphs.

2.  Mathematical Formulation
We consider the peristaltic pumping of a

conducting Newtonian fluid flow in a channel of half-
width a. A longitudinal train of progressive sinusoidal
waves takes place on the upper and lower walls of the
channel. For simplicity, we restrict our discussion to
the half-width of the channel as shown in the Fig.1.
The wall deformation is given by

   2, sinH X t a b X ct


     
 (2.1)

where b is the amplitude,  the wavelength and c is
the wave speed.

Under the assumptions that the channel

length is an integral multiple of the wavelength  and
the pressure difference across the ends of the channel
is a constant, the flow becomes steady in the wave
frame   moving with velocity c away from the fixed
(laboratory) frame . The transformation between these
two frames is given by

  ,  ,   ,   x X c t y Y u U c v V       and

  ( )  ( ,  ),p x P X t  (2.2)

where (u, v) and  (U, V) are the velocity components,
p and P  are pressures in the wave and fixed frames of
reference, respectively.

The equations governing the flow in wave frame are
given by
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Fig. 1 The Physical Model
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The dimensional boundary conditions are

 u c  at  y H  (2.6)
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

at  0y   (2.7)

Introducing the non-dimensional quantities
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Into equations (2.3) to (2.5), we get
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where 
 

0M aB 


   is the Hartmann number and

 
Re ac


  is the Reynolds number..

Using long wavelength ( i. e . ,   <<1)

approximation,  the  equations (2.9) and (2.10) become

 2 2 2

2 2 21 1
u M p Mu

y m x m
 

  
        (2.11)
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y
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From  Eq. (2.12), it is clear that p is independent of  y.
Therefore Eq. (2.11) can be rewritten as
 2 2 2

2 2 21 1
u M dp Mu

y m dx m


  
    (2.13)

The corresponding non-dimensional boundary
conditions are given as

 1u   at  y h  (2.14)

 
0u

y



 at  0y   (2.15)

Knowing the velocity, the volume flow rate q  in a
wave frame of reference is given by

 
0

h
q udy  .  (2.16)

The instantaneous flow Q (X, t) in the laboratory
frame is
  

0 0
( , ) 1

h h
Q X t UdY u dy q h     

(2.17)

The time averaged volume flow rate  Q  over

one period 
 
T

c
  

 
 of the peristaltic wave is given

by

 

0

1 1
T

Q Qdt q
T
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3.  Solution
Solving Eq. (2.13) together  with the boundary

conditions (2.14) and (2.15), we get

 
2

1 cosh 1 1
cosh

dp yu
dx h


 

     
 (3.1)



The volume flow rate  in a wave frame of reference is
given by

 
3

1 sinh cosh
cosh

dp h h hq h
dx h

  
 

    
 (3.2)

From Eq. (3.2), we write

 
   3 cosh

sinh cosh
q h hdp

dx h h h
 
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




(3.3)

The dimensionless pressure rise per one wavelength
in the wave frame is defined as

 1

0

dpp dx
dx

    (3.4)

The dimensionless frictional force per one
wavelength in the wave frame is defined as

 
 

1

0

dpF h dx
dx

   (3.5)

Note that,  0M   as our results coincide with the
results of Shapiro et al.9.

4. Results and Discussion

Fig. 2 shows the variation of axial pressure

gradient 
 dp
dx

 with Hartmann number M for   0.5 

and m = 0.2. It is found that, the axial pressure

gradient 
 dp
dx  

increases with increasing M.

The variation of axial pressure gradient 
 dp
dx

with Hall parameter m for  0.5   and M = 1  is
shown in Fig. 3. It is observed that, the axial pressure

gradient 
 dp
dx

 decreases with increasing m.

Fig. 4 depicts the variation of axial pressure

gradient 
 dp
dx

 with amplitude ratio  for M = 1 and

m = 0.2.  It is noted that, the axial pressure gradient

 dp
dx

  increases with increasing .

The variation of pressure rise p with time-

averaged flow rate  Q  for different values of Hartmann

number M with  0.5   and m = 0.2  is depicted in

Fig. 5. It is found that, the time-averaged flow rate  Q

increases in the pumping region    0p   with

increasing  M, while it decreases in both the free-

pumping    0p   and co-pumping   0p 
regions with increasing M.

Fig. 6 illustrates the variation of pressure rise

p with time-averaged flow rate  Q  for different values

of Hall parameter m with  0.5   and  M = 1. It is

observed that, the time-averaged flow rate  Q
decreases in the pumping region with an increase in
m, while it increases in both the free-pumping and co-
pumping regions with increasing m.

The variation of pressure rise p with time-

averaged flow rate  Q  for different values of amplitude

ratio   with M = 1 and m = 0.2  is shown in Fig. 7.

It is found that that the time-averaged flow rate  Q
increases with increasing amplitude ratio    in both
the pumping and free pumping regions, while it
decreases with increasing amplitude ratio   in the co-

pumping region for chosen   0p  .

Fig. 8 shows the variation of frictional force

F  with time-averaged flow rate  Q  for different values

of Hartmann number M with  0.5   and m = 0.2.

It is noticed that, the frictional force F initially
decreases and then increases with increasing M.
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Fig. 2. The variation of axial pressure gradient 
 dp
dx

with Hartmann number M for  0.5   andm = 0.2.

Fig. 3. The variation of axial pressure gradient 
 dp
dx

with Hall parameter m  for   0.5   and  M = 1.

Fig. 4. The variation of axial pressure gradient 
 dp
dx

with amplitude ratio  for M = 1 and  m = 0.2.

Fig. 7. The variation of pressure rise p with time-

averaged flow rate  Q  for different values of

amplitude ratio  with M = 1 and m = 0.2.

Fig. 5. The variation of pressure risep with time-

averaged flow rate  Q  for different values of

Hartmann number M with   0.5   andm = 0.2.

Fig. 6. The variation of pressure rise p with time-

averaged flow rate  Q  for different values of Hall

parameter m with  0.5   and  M = 1.
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The variation of frictional force F with time-

averaged flow rate  Q  for different values of Hall

parameter m with  0.5   and M = 1 is shown in

Fig. 9. It is observed that, the frictional force F initially
increases and then decreases with increasing m.

Fig. 10 depicts the variation of frictional force

F  with time-averaged flow rate  Q  for different values

of amplitude ratio   with M = 1 and m = 0.2.  It is
found that, the frictional force F first decreases and
then increases with increasing  .

5.  Conclusions

In this paper, the effect of hall on the
peristaltic flow of a conducting fluid in a symmetric
channel under the assumption of long wavelength
approximation is investigated. The expressions for the
velocity and pressure gradient are obtained
analytically. It is found that, the pressure gradient and
the time-averaged flow rate in the pumping region
increases with increasing Hartmann number and
amplitude ratio, while they decrease with increasing
hall parameter.  Further it is observed that, the frictional
force initially decreases and then increases with
increasing Hartmann number and amplitude ratio,
whereas it initially increases and then decreases with
increasing hall parameter.
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