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Abstract

The aim of the present paper is to study the magneto hydrodynamic flow of conducting Walter’s
visco-elastic fluid in a long uniform straight channel of rectangular cross-section under the influence of time
varying pressure gradient and uniform magnetic field applied perpendicularly to the flow of fluid. The exact
solution for the velocity of fluid has been obtained by using integral transform technique. Some particular cases
of pressure gradient have been discussed in detail. Also we have discussed the case when magnetic field is
withdrawn. Besides, the corresponding viscous flow problem has been derived as a limiting case when the
relaxation time parameter tends to become zero.
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Introduction

Kumar, Singh and Sharma6; Agrawal, Agrawal and Varshney1 discussed the flow of visco-elastic fluid
under the influence of magnetic field. Cintaginjala, Rao and Rao2 studied about Walter’s memory flow. Kumar,
Kumar and Rao5 analyzed the result of radiation effect on an unsteady MHD flow. Tripathi, kumar and Singh11

discussed the unsteady MHD flow of conducting Walter’s visco-elastic fluid through porous medium. Garg,
Singh and Bansal4; Sarkar Das and Jana10 discussed the Hall Effect on MHD flow. Sarma9 studied the MHD flow
of visco-elastic fluid through a channel in the presence of magnetic field. Rajput and Kanaujia7; Rath and
Mohapatra8 discussed the problem of the MHD flow of conducting fluids through Channels. Fazuruddin,
Sreekanth and Raju3 investigated the problem of magneto hydrodynamic  visco plastic flow over a vertical plate
with convective heating.
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 In the present paper, the flow of Walter’s visco-elastic fluid in a long uniform rectangular channel
under the influence of time dependent pressure gradient has been studied. Various particular cases have also
been discussed in detail. We have also derived the case when magnetic field is withdrawn i.e. if  M0.

Formulation of the problem :
Here we  are considering the motion of conducting visco-elastic Walter’s fluid inside a long uniform

rectangular tube and under transverse uniform magnetic field.
The boundary walls of rectangular tube considered to be the planes x=±a, y=±b. The motion is under

the influence of time dependent pressure gradient. Let the motion of the fluid along z-axis i.e. along the axis of
rectangular channel.

According to the Navier-Stockes equation of motion for visco-elastic Walter’s fluid under the influence
of uniform magnetic field applied perpendicularly to the flow of fluid is given by
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= −
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where W(x,y,t) is the velocity of the fluid in z-direction, µ1 the kinematical coefficient of visco-elasticity,  the

density of the fluid, ν ൬=
μ
ρ൰

  the  coefficient of viscosity,  the electrical conductivity and B0 is the magnetic

inductivity.
Introducing the following non-dimensional quantities:
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in equation (1), we get (after dropping stars)
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where  M = B0aඨ
σ
μ     (Hartmann number) 

Here, the initial and boundary conditions are

W(x, y, 0) = 0 (3)

W(1, y, t) = 0,    0 ≤ y ≤ l,           t > 0

∂W
∂x = 0,                                            x = 0

⎦
⎥
⎥
⎥
⎤

 (4)
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W(x, l, t) = 0,    0 ≤ x ≤ 1              t > 0
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⎦
⎥
⎥
⎥
⎤

 
 (5)

where  l =
b
a 

Solution of the problem :
For solving eqn. (2), we use the following finite Fourier cosine transforms defined as:

Wc (i, y, t) = නW
1

0

(x, y, t) cos(pix) dx
 (6)

Wcത(x, j, t) = නWc

l

0
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 (7)

where pi = (2i + 1)
π
2 ,        pj = (2j + 1)

π
2l 

Consequently, we have the following inverse of finite Fourier cosine transforms:

W(x, y, t) = 2෍Wc

∞

i=0

(i, y, t) cos(pix ) (8)

Wc (i, y, t) =
2
l ෍Wcത

∞

j=0

(i, j, t) cos൫pjy ൯ (9)

We use transforms (6) and (7) to initial condition (3), we get

Wcത(i, j, 0) = 0 (10)
Also taking finite Fourier cosine transform to boundary conditions, we have

Wc  (i, l, t) = 0

∂Wc
∂y (i, 0, t) =  0

  ൪ 
 (11)



Applying transforms (6) and (7) to the equation of motion (2) and using initial and boundary conditions (10) and
(11),   we get
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Then using the Laplace transform defined as:

Wഥcത(s) = ∫ Wcത
∞

0 e−st dt
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0 e−st dt

 ൪
 (13)

and by condition (11) on equation (12), we get
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 (14)

Now, by Laplace inversion formula and using convolution theorem, we get

Wഥcത =
(−1)i+j

pipjζ1
න F

t
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             Thus, by Fourier cosine inversion formula as in equation (8) and (9), the expression of velocity becomes
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 where         c1 =
ξ1

ζ1
,    pi = (2i + 1)

π
2
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We discuss the nature of velocity for following different particular cases:
Case I: Flow under constant pressure gradient:
          Let,   F(t)=F0              (a constant)
From equation (16) the velocity will be

W =
4
l ෍෍ቈ

(−1)i+jF0

pipjξ1
(1− e−c1t) cos(pix) cos൫pjy൯቉

∞
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∞
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                                                           (17)
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Case II:  Flow under impulsive pressure gradient:
               Let, F(t) = f0 (t)
Where (t) is the unit impulse function defined as

δ(t) = ൜
0,     t ≠ 0
1,     t = 0

 

So, from equation (16), we get the velocity
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4
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 (18)

Case III: Flow under transient pressure gradient:
Let, F(t) = f1 eNt, (N > 0),
Where f1 is a constant.
   So from equation (16), the velocity takes form

W =
4
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Case IV: Flow under periodic pressure gradient:
                 Let, F(t) = Re (F1 eit ),
Where F1 is a constant,
From equation (16), the velocity becomes
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         xcos(pix)൫pjy൯  (20)
Case V:   When the fluid is purely viscous:
For purely viscous fluid the kinematical co-efficient of visco-elasticity  µ1= 0  and we get

W =
4
l ෍෍ቈ
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t

0
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∞
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(21)

where ξ1 = M2 + pi
2 + pj

2 ,          c1 = ξ1

Case VI: when magnetic field is withdrawn i.e.  M  0
We get all results for Walter's fluid motion in the absence of magnetic field

The values of  ξ1   and ζ1  are given by
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ξ1 = pi
2 + PJ

2 and  ζ1 = 1 − μ1൫pi
2 + pj

2൯ 
(22)

Conclusion

In this paper we discussed the MHD flow of conducting Walter's visco-elastic fluid in a long uniform
rectangular channel. Also we discussed   the nature of velocity for different cases as flow under constant
pressure gradient, impulsive pressure gradient, transient pressure gradient and when fluid is purely viscous
and when the magnetic field is withdrawn.
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