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Abstract

An accurate edge dominating set D of agraph G = (V, E) isan accurate connected edge dominating
set, if < D> is connected. The accurate connected edge domination number . (G) is the minimum

cardinality of an accurate connected edge dominating set. In this paper, we initiate a study of 7, (G) interms

of vertices, edges, cut vertices and different parameters of G . Further we characterize the accurate connected

edge domination number in cartesian product and corona of graphs.

Key words: Edge dominating set, Accurate edge dominating set, Accurate connected edge dominating
set.
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1 Introduction

Let G beafinite, simple, non-trivial, undirected and connected (p,q) graph with vertex set V (G)

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
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and edge set E(G). The greatest distance between any two vertices of a connected graph G is called the
diameter of G and is denoted by diam(G) . For any real number X, [ x | denotes the smallest integer not
less than x and LXJ denotes the greatest integer not greater than X. In general < X > to denote the

subgraph induced by the set of vertices X . The maximum(minimum) degree of a vertex v is denoted by
A(G)(6(G)).

Anonseparable graph is connected, nontrivial and has no cut points. A block of a graph is a maximal
nonseparable subgraph. As usual Pp,Cp,Wp and Kp are respectively the path, cycle, wheel and complete

graph.

Spider is a tree with one vertex of degree at least three and all others with degree at most one.
Caterpillar tree is a tree in which all the vertices are within distance one of a central path. A polyiamond
composed of six equilateral triangle is called Hexiamond.

Aset D ¢ E(G) issaid to be an edge dominating set if every edge in < E(G)— D > is adjacent
to some edges in D. The Edge domination number of G is the cardinality of smallest edge dominating set of G
and is denoted by ¥'(G) . This concept was introduced by Mitchell and Hedetniemi’.

A edge dominating set D of agraph G is an accurate edge dominating set, if < E — D > has no

dominating set of cardinality | D | . The accurate edge domination y,, (G) is the minimum cardinality of an

accurate dominating set. This concept was introduced by Venkatesh , Kulli, Venkanagouda M Goudar and
Venkatesha'®,
In this paper we follow the notations of *.

2 Preliminary notes :
We need the following results to prove further results.

Theorem 2.1%? IfGisa (p,q) graph without isolated vertex then B <7 (G)-
A(G)+1

Theorem 2.2 For any connected graph G of order p >3, 7. (G) < p-2.

Theorem 2.3° For any graph G,  (G) < q—A(G).

In the next section we define and discuss some results on accurate connected edge domination
number of a graph.

3 Accurate connected edge domination number of a graph :

We define a new parameter accurate connected edge domination number of a graph. An accurate edge
dominating set D of a graph G = (V,E) is an accurate connected edge dominating set, if < D > is

connected. The accurate connected edge domination number .. (G) is the minimum cardinality of an accurate
connected edge dominating set.
In the figure 3.1, the accurate connected edge dominating set is A=9{9,10,11}. Therefore
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Veae (G) = Al= 3.

7 6
Figure3.1

4 Accurate connected edge domination number of graphs :
Theorem 4.1

+1
a) For any Wheel W, 7cae(Wp) = rpT—| )

b) Let p, be apathand C, be any cycle then ¥, (P, xC,) =2p—2.
c) Let p, and Ppl be two paths with p, > 3 then Y cae (Ps X Ppl) =2p,.

d) Let K, and Cp be the complete graph and cycle respectively with p >3 then ¥, (Ko Cp) =p-2.

Theorem 4.2 Let T be the caterpillar tree with each cut vertex of degree greater than two. Then

S+1 if sis odd
Ve (T) =19 S+1 ifsis odd

Where S is the number of cut verticesin T .
Proof. Let T be the caterpillar tree of (p, () graph with each cut vertex of degree greater than two.

We consider M ={e /1< g < q} be the set of all non-end edges of T and N ={e;/1< j<q} be the set
of all end edges of T . Let C ={v;,V,,..V,/1<s< p} be the cut vertices of T and |C|=S. Let
D ={e,,e,,..e,/1<d < g} be the minimum accurate edge dominating set of T . If the induced subgraph

< D > is connected then A= D itself forms a minimum accurate connected edge dominating set of T .

Otherwise, if the induced subgraph < D > is not connected then consider D1 c E(T)—D such that



Venkanagouda M. Goudar, et al. 293

A= D u D, formsaminimum accurate connected edge dominating set of T .
We have the following cases

Case 1. Suppose | C | is odd.
Consider N, = N andlet D = M U N, forms the accurate edge dominating set with minimum cardinality.
Clearly, M < D and the induced subgraph D isconnected. Then A= D itself forms the accurate connected
edge dominating set of T . Thus, | A|=| C | +1. Therefore y_..(T) =s+1.

Case 2. Suppose | C | is even.

Let M, ={e,,e;,6;,..6/1<r<g}cM, N, =N andlet D = M, U N, forms the accurate
edge dominating set with minimum cardinality. But the induced subgraph < D > is not connected. Consider

M, ={e,,e,,..e/l<t<g}and A=DuUM, forms the accurate connected edge dominating set of T

with minimum cardinality. Thus, | A|=| C | —1. Therefore ., (T) = s—1.
Hence the proof.

diam(T
Theorem 4.3 For any spider tree Tand diam(T) <8, Veae(T) = r%—l +2A(T) .

Proof. Let T be a spider tree with diam(T) <8. Let B ={e;,e,,...,/1 <1< g} be the set of edges
which constitute the diametrical path in Tand | B |= diam(T) <8. Let u € A(T) be the maximum degree

and there exists at least three edges incident tou. Thatis A(T) >3.Let D ={e,,e,,..6;/1< j <} bethe

minimum accurate edge dominating set of T.
We have the following cases

Case 1. Suppose A(T) =3.
Forevery €; € D for 1< j <q liesin the diametrical path, thatis D — B . If < D > isconnected

then A= D itself forms the accurate connected edge dominating set with minimum cardinality. Otherwise,
consider & e E(T)-D, 1<k<q and A={e;}{e} forms minimum accurate connected edge
dominating set of . Also €;,€, € B, forall j,k.
Therefore,

Ac B,

|Al<[B|+2]ul,

| Al<| B|+2A(T),

M =0T 20).
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Case 2. Suppose A(T) > 3.
Let R={e,e,,...e,,/1<m<q} bethe edge set incidentto U € A(T ) . There exists at least one
edge e, eDNB and e, e R, 1<r<m such that {&, }U{e,}= D for 1< j<q.If <D>is

connected then A= D itself forms the accurate connected edge dominating set with minimum cardinality.
Otherwise, consider €; € E(T)—D, 1< f <q and A={e,}{e }{e;} forms minimum accurate

connected edge dominating set of T.
Therefore,

Ac B,
|Al<|B[+2]u],
| Al B[+2A(T),

M) =TT 20
Hence the proof.

Theorem 4.4 For any path Ppl of order p, >3, 7cae(Ppl) =(g-—2except p,=5.

Proof. LetVv e 5(Ppl) be the minimum degree of Ppl and|v|=1.Let D ={e, e,,..,/1<s<q}
be the minimum accurate edge dominating set of Ppl' If < D > isconnected then A=D itself forms a
accurate connected edge dominating set of Ppl with minimum cardinality. Otherwise, consider

Fc E(Pp ) — D and the set A=DUF forms the minimum accurate connected edge dominating set of
- 1

P suchthat | Al= 7cae(Ppl) . From theorem 2.2,

P
|Al< p, -2,
|Al+|VI= p -2,
| Al= pr—2-]v],
|Al= p,—2-1,
|Al=(p,-1)-2,
|Al=q-2,

7cae(Ppl) =q -2
Hence the proof.

Theorem 4.5 For any complete graph K o of order p, >3,
1
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3 if pp=4and5
ycae(Kpl): P, -1 if p126

Proof. Let G = Kpl be a complete graph of order p, > 3 with maximum degree A(G) = p, —1.

The distance between any two vertices is exactly one and diam(G) =1.
We have the following cases

Case 1. Suppose p, =4and5.
Let D ={X, Yy, 2} < E(G) be the minimum accurate edge dominating set of G. The induced subgraph
< D > isconnected. So that A= D itself forms a minimum accurate connected edge dominating set of G
such that | A|= 3. Clearly, | A|< A(G) . Obviously the equality holds if p, = 4.Thus, | A|= A(G).
Vew(Kp )= P -1=4-1=3,
Suppose p, =5,
| Al A(G),
| Al +diam(G) = A(G),
| Al+1=A(G),
|Al= AG) -1,
ycae(Kpl) =(p,-1)-1=p,—-2=5-2=3.
Case 2. Suppose P, > 6.

Let D={g, €, ,---epl,z}g E(G) be the minimum accurate edge dominating set of G. The induced

subgraph < D > is not connected. Consider an edge {X} € N (D) and A = D U{x} forms the minimum

accurate connected edge dominating setof Gand | A|= p, —1.
Clearly,

| Al=[V(G) | —-diam(G),

| Al= A(G),

;/cae(Kpl) = p1 -1
Hence the Proof.

Theorem 4.6 For any cycle C,, of order p, > 5, Ve (Cpl) = _A(Cpl) .

Proof. Let G:Cpl:el,ez,___e be the cycle with ( edges and A(Cpl)zz. Let

P
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D={e.e, ,---eL P l}g E(G) be the minimum accurate edge dominating set of G. The induced subgraph

< D > isnotconnected except Csand Cg. Consider B ={e,/1<i< g} < N(D) and A=D U B forms

the minimum accurate connected edge dominating set of G. Further, edge subset R = {y,, y,} = N(A) are
connected. By theorem 2.3,

|AFIE(G)[-[R],
|Al=q-2,
7e(Cy ) =A-A(C,)).
Hence the proof.
Theorem 4.7 Let G = B(p = 8,q =13) is aHexiamond graph, y,.(B) = diam(B).
Proof. Let E(G)={e,e,,..e5} be the edge set of Hexiamond graph G. Let
M = {el, €, ,...erllé r <13} be the minimum set of edges which constitute the longest path between any

two distinct vertices v,,V, €V (G) such that d(v,,v,) = diam(G).
We have the following cases

Case 1. Suppose G = B contains at least two vertices of maximum degree is five. Let D ={e,,e,}

be the minimum accurate edge dominating set of G and induced subgraph < D > isnot connected. Consider

A= Du{e3} be the minimum accurate connected edge dominating set of G. Clearly, | A [>| M |. Thus,
Veee(B) 2 dian(B).

Case 2. Suppose G = B contains at most one vertex of maximum degree is five. Let
D :{el,ez,%,e4} be the minimum accurate edge dominating set of G and induced subgraph < D > is

connected. Therefore, theset A = D is the minimum accurate connected edge dominating set of G. Clearly,

| A2 M |.Thus, 7...(B)>dian(B).

Hence the proof.

5 Results on corona and cartesian product of graphs :

In this section we discuss the results on Accurate connected edge domination number of corona and
cartesian product of two graphs.

The cartesian product of the graphs G and H, written as G x H , is the graph with vertex set
V(G)xV (H),two vertices (u,,u,) and (v,,v,) beingadjacentin G x H ifand onlyifeither u, = v,
and u,v, e E(H),0ru, =v, and u,v, € E(G).

Theorem 5.1 Let G be the cartesian product of Kp X Kp of order p > 2,



Venkanagouda M. Goudar, et al. 297

p+1 if p=2

p+2 if p=3

ycae(KpXKp): 2 -
p°—p-1 if p>4

Proof. Let K b be the complete graph with p vertices and ( edges. Let G = Kp X Kp be the

cartesian product of order p > 2. Consider

V(G) =l ), Wy V) U V),

(Uy,\), (U, V), (Uy, V),

Uy \), (U, V), U, V) 3

and the edge set E(G) ={e1,e ,..ezpq}.
We have the following cases

Case 1. Suppose p =2 then D :{el’ez’%} be the minimum accurate edge dominating set of G
and the induced subgraph < D > isconnected. Therefore A = D itself formsa minimum accurate connected

dominating set of G. Clearly, | A|=|V(Kp) | +1. Hence j/cae(G) = p+1.

Case 2. Suppose p = 3 then D :{el,ez,%} be the minimum accurate edge dominating set of G.

But the induced subgraph < D > is not connected. Consider D, ={e,,6,} E(G)—D such that

A = D u D, forms a minimum accurate connected dominating set of G. Clearly, | Al=| D|+2. Itimplies,
| A|=|V(Kp) |+2. Hence 7,.,(G) = p+2.

Case 3. Suppose p > 4 then D :{el, e, ..e[/1£t gq} be the minimum accurate edge dominating

set of G. But the induced subgraph < D> is not connected. Consider
D, ={e,,e,,...e,/1<r<q}c E(G)- D suchthat A =D v D, formsaminimum accurate connected

dominating set of G. Clearly, | A|=|V (K ) ? —|V(K,)[+1. Hence 7,.(G) = p’—p+1

Hence the proof.
Theorem 5.2 Let For any path Ppl with p, > 2,
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r+1 if p,=2
r-1 if p,=3

ycae(Pp pr): I pl
1" r+2 if p,>3

Where is the number of regionsin P, x P, .
1 1

Proof. Let G = Ppl X Ppl be the (p,q) graph. Let R ={r,, el 2 _} be the region set of G
D+

and D :{el, g, ..Q/lé | Sq} be the minimum accurate edge dominating set of G.
We have the following cases

Casel. Suppose p, = 2.

The set D :{el,ez,...epl+l} is accurate edge dominating set of G and also induced subgraph

< D > isconnected. Therefore A = D itself forms the minimum accurate connected edge dominating set of
G. Clearly,

AR p+L
| Al=[(p,~1) +1]+1,
| A RI+L

}/Cae(Ppl X Ppl) =r+l.
Case 2. Suppose p, = 3.

Clearly, D = {el, €, €, +1} is accurate edge dominating set of G and its induced subgraph < D >
1

is connected. Therefore A= D itself forms the minimum accurate connected edge dominating set of G.
Clearly,

AR p,+L
| AI=[(p, 1) +1]-1,
|AFIRI-L

}/Cae(Ppl X Ppl) =r-1.
Case 3. Suppose p, >3.

The set D={g,,&,,..8/1<I <} is not connected and consider A = D U D, forms a minimum

accurate connected dominating set of G, where D, c E(G) - D .Clearly,
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IR D,
IR P AL
IRIF| Al-2,
| AFl R1+2,

| AI=[(p -1)" +1]+2,
}/Cae(Ppl X Ppl) =r+2.
Hence the proof.

Theorem 5.3 Let PIol be a path of length greater than or equal to two and Cj, is a cycle then,
}/Cae(Ppl xC,) 2> diam(Ppl xC,) +A(Ppl xC,).

Proof. Let G = Ppl xC, be the cartesian product of (p,q) graph. Let v, € V (G) be the maximum
degree of G and |V, |= 4= A(Ppl xC,). Let {el,ez,...epl+l} forms the diametrical path of G such that
diam(G) =|V (P, )| +1. Let D ={e/1<i <q} be the ¥,,setof G.We observed that induced subgraph

< D > is disconnected. Choose an edge set F :{ejllg J<Q}<E(G)-D and A=DUF forms

the minimum accurate connected edge dominating set of G.
Thus,

ARV (P ) [+]v, [ +1,
ARV (P ) [+1)+ v, |,

Veae (P, XCy) 2 diam(P, xC,) +A(P, xC,).
Hence the proof.

Theorem 5.4 Let G = Kp X Kp be the cartesian product graph with p < p,,p,>2,
1 2
}/Cae(Kpl X sz) >2p, —3. Equality holds if p, = 2.
Proof. Let G = Kpl and H = sz be the two graph of order p, and p, respectively. Let

E(GxH)={e,e ,..eq} be the edge set of Gx H .
We have the following cases
Case 1. Suppose G = K, and H=K_ with p, > 3.
2

The edge set E(G xH) ={e1,e2,...ep2} and let D :{el,ez,___ep } be the accurate edge
2 2
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dominating set of G x H . But induced subgraph < D > is disconnected except K2 X Ks' Consider
{e,}eE-D, 1<j<q such that A= Du{ej}:{el,ez,...ezpz_s} forms the minimum accurate

connected edge dominating set of G x H . Therefore, | A|= 2|V (H) | -3. Thus, 7.,(GxH)=2p,-3.

Case 2. Suppose G = Kp with p, > 2 and H = Kp with p, > 4.
1 2

Let D={e,&,,..8/1<t <} be the accurate edge dominating set of G x H . But induced
subgraph < D > is disconnected. Consider {ej/lS J<p<E—-D suchthat A= Du{ej}forms the

minimum accurate connected edge dominating set of G x H . Therefore, | A[> 2|V (H)|-3. Thus,

7/(:ae(G>< H) >2 > -3

Hence the proof.
Now we define corona, Let G, and G, be the graphs of order P1 and p; respectively. The corona of

two graphs Gy and Gy is the graph G, - G, obtained by taking one copy of G1 and p; copies of G, and then
joining the i™ vertex of G to every vertex of the i copy of G;.

Theorem 5.5 For any Gz and path PIol path of order P1, Vcae (Cso Ppl) <2(p, +1).
Proof. Let G=C,oP, be the corona of (p,q) graph. Let V(C) ={u,u,,u} and
V(Ppl) :{V11V21---Vp} be the vertex set of Gz and PIol respectively. Let x € V (G) bethe maximum degree

of Gand A(G) = p, + 2. Let D < E(G) be the accurate edge dominating set with minimum cardinality.

Also the induced subgraph < [ > is not connected except C30 K1 Consider F < E(G) — D such that

A =D UF forms minimum accurate connected edge dominating set of G.
Clearly,

| AV (P,) | +A@G),
| Al< py+ (P + 2),

Veae (Cy 0 Ppl) <2(p, +1).
Hence the proof.

Theorem 5.6 For any path PIol of length greater than two and the path P,, 7cae(Ppl © Pz) =2 p,—1.

Proof. Consider thegraph G = P, o P, with p vertices and (| edges. Let B, = {b,, bz,...bpl} be the
1

block set such that E(ly (G)) ={g;,&,,8,/1<i < p.} for every block by € B, and B, ={b1',bé,---b‘pl,1}
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be the block set such that E(b; (G)) ={x,;/1< j < p, —1} for everyblock b} €B,.Let D=1{e.€,..8, ,}

be the Q/ae(G) of G. But D is not accurate connected edge dominating set of G, which is a contradiction.

Choose some edges {&, /1< f <} = (E(G)—D) and A= D {e;} forms minimum 7,,{(G) set of G.

We observe that E(b; (G)c A for 1< j< p,—1. Thus, |Al B, |+|B,|. It implies that,

| A= (p1 -1)+ pl.ThEFEfOFE, }/cae(F)pl ° PZ) = 2p1 _1-

Hence the proof.

6 Conclusion

In this paper, we introduced the new parameter ¥.,.(G) of G, in the field of domination theory of

graphs. We obtained many exact values and bounds for 7/cae(G) . We also obtained some results of 7/cae(G)

on the cartesian product and corona of graphs.
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