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Abstract

A model for onset of ferroconvection via internal heat generation in a ferrofluid saturated porous layer
is explored. The Brinkman–Lapwood extended Darcy equation with fluid viscosity different from effective
viscosity is used to describe the flow in the porous medium. The lower boundary of the porous layer is assumed
to be rigid- paramagnetic and insulated to temperature perturbations, while at upper stress-free boundary a
general convective-radiative exchange condition on perturbed temperature is imposed. The resulting eigenvalue
problem is solved numerically using the Galerkin method. It is found that increasing in the dimensionless heat

source strength sN , magnetic number 1M , Darcy number Da  and the non-linearity of magnetization

parameter 3M  is to hasten, while increase in the ratio of viscosities , Biot number Bi  and magnetic

susceptibility   is to delay the onset of ferroconvection. Further, increase in Bi ,  1Da  and sN  and

decrease in ,  1M , and 3M  is to diminish the dimension of convection cells.
Key words: ferroconvection, porous layer, Galerkin method, internal heat generation, viscosity ratio.
Mathematics Subject Classification:  58D30, 76E06, 76R10

1. Introduction

Magnetic fluids are stable colloidal
suspensions of magnetic nanoparticles in a carrier fluid

such as water, hydrocarbon (mineral oil or kerosene),
or fluorocarbon. The nanoparticles typically have sizes
of about 100 angstroms, or 10 nm and they are coated
with surfactants in order to prevent the coagulation.
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Magnetic fluids are also called ferrofluids and various
kinds of such fluids have been developed and
successfully used in many engineering applications.
Presently, these fluids are in wide use in seals,
bearings, magnetostatic support,  jet printers,
separation of nonmagnetic particles, flow control and
drag reduction, dampers, actuators, sensors,
transducers, and medical applications. An
authoritative introduction to this fascinating subject
is amply provided in the books (see1-3). Thus, magnetic
fluids have received much attention in the scientific
community over the years.

The magnetization of ferrofluids depends on
the magnetic field, temperature, and density. Hence,
any variations of these quantities induce change of
body force distribution in the fluid and eventually give
rise to convection in ferrofluids in the presence of a
gradient of magnetic field. There have been numerous
studies on thermal convection in a ferrofluid layer
called thermomagnetic convection analogous to
Rayleigh-Benard convection in ordinary viscous
fluids. The theory of convective instability in a
horizontal layer of ferrofluid began with Finlayson4.
Slavtchev et al.5 have investigated the stability of
thermoconvective flows of a ferrofluid in a horizontal
channel subjected to a longitudinal temperature
gradient and an oblique magnetic field.  Recently,
Nanjundappa et al.6 have studied the effect of magnetic
field dependent viscosity on the onset of thermal
convection in a horizontal ferrofluid layer heated from
below. Recently, Nanjundappa et al.7 have investigated
theoretically the effect of magnetic field dependent
viscosity on the onset of Benard-Marangoni
ferroconvection in a horizontal ferrofluid layer.

Thermal convection of ferrofluids saturating
a porous medium has also attracted considerable
attention in the literature owing to its importance in
controlled emplacement of liquids or treatment
chemicals, and emplacement of geophysically imageble
liquids into particular zones for subsequent imaging
etc. Rosensweig et al.8 have studied experimentally
the penetration of ferrofluids in the Heleshaw cell. The
stability of the magnetic fluid penetration through a
porous medium in high uniform magnetic field oblique
to the interface is studied by Zahn and Rosensweig9.

The thermal convection of a ferrofluid saturating
porous medium in the presence of a vertical magnetic
field is studied by Vaidyanathan et al.10. A detailed
study on the onset of ferroconvection in a sparsely
packed porous layer for more realistic velocity and
thermal boundary conditions has been made by
Shivakumara et al.11. Recently, Nanjundappa et al.12

have performed linear stability analysis to investigate
buoyancy driven convection in a ferrofluid saturated
porous medium.

The practical problems cited above require a
mechanism to control thermomagnetic convection.
One of the mechanisms to control (suppress or
augment) convection is by maintaining a nonuniform
temperature gradient across the layer of ferrofluid. Such
a temperature gradient may arise due to (i) uniform
distribution of heat sources (ii) transient heating or
cooling at a boundary, (iii) temperature modulation at
the boundaries and so on. Works have been carried
out in this direction but it is still in much-to-be desired
state. Rudraiah and Sekhar13 have investigated
convection in a ferrofluid layer in the presence of
uniform internal heat source. The effect of non-
uniform basic temperature gradients on the onset of
ferroconvection has been analyzed by Shivakumara
and Nanjundappa14-16. Jitender Singh and Renu Bajaj17

have studied thermal convection of ferrofluids in the
presence of uniform vertical magnetic field with
boundary temperatures modulated sinusoidally about
some reference value. Recently, Idris and Hashim18

and Ferdows et al.21-24 have investigated the instability
of Benard-Marangoni ferroconvection in a horizontal
layer of ferrofluid under the influence of a linear
feedback control and cubic temperature gradient.

All the aforementioned investigations are
limited to classical ferrofluid layer (non-porous domain)
and no attempts have been made to understand control
of thermomagnetic convection in porous media despite
its importance in ferrofluid technology.  The intent of
the present study is,  therefore, to investigate
thermomagnetic convection in a ferrofluid-saturated
porous layer in the presence of internal heating. The
presence of internal heating deviate the basic
temperature, magnetic field intensity and magnetization
distributions from linear to nonlinear, which in turn
play a decisive role in understanding control of
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thermomagnetic convection. Besides, porous materials
used in many technological applications of practical
importance possess high permeability values.
Accordingly, the flow in the porous medium is
described by the Brinkman-Lapwood extended Darcy
equation with fluid viscosity different from effective
or Brinkman viscosity. The resulting eigenvalue
problem is solved by the Galerkin technique with
modified Chebyshev polynomials as trial functions.
The available results in the literature are obtained as
limiting cases from the present study.

2. Mathematical Formulation :
The system considered is an initially

quiescent incompressible constant viscosity ferrofluid
saturated horizontal porous layer of characteristic
thickness d in the presence of a uniform applied
magnetic field  H0 in the vertical direction. The
horizontal extension of the porous layer is sufficiently
large so that edge effects may be neglected. A Cartesian
co-ordinate system (x, y, z) is used with the origin at
the bottom of the porous layer and z-axis is directed
vertically upward. At the lower boundary  z = 0  a
constant heat flux condition of the form

 1( / ) Tk T z q     (1)
is used, while at the upper boundary z = d a radiative-
type of condition of the form

 1( / ) ( )tk T z h T T      (2)
 is invoked. In the above equations, T is the
temperature,  Tq  is the conductive thermal flux,  1k   is

the overall thermal conductivity,  th  is the heat transfer

coefficient, and  T   is the temperature in the bulk of
the environment. The flow in the porous medium is
described by the Brinkman-Lapwood extended Darcy
equation with fluid viscosity different from effective
viscosity and the Oberbeck-Boussinesq approximation
is assumed to be valid. In most of the studies, the
Oberbeck-Boussinesq approximation has been quite
mistreated, and the justifications that have been given
for this approximation are largely incorrect. Rajagopal
et al.19 have provided a systematic basis for this
approximation and discussed some of the errors in the
previous approaches.
It is clear that there exists the following solution for

the basic state:
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Here,  M


is the magnetization, H


the magnetic intensity

of the fluid,  k̂  the  unit vector in the z-direction,  1k

the thermal  conductivity,  ,0 0( / )H TM H     the

magnetic susceptibility,   ,0 0( / )H TK M T     the

pyromagnetic co-efficient,  0H  imposed uniform

vertical magnetic field  and  0 0 0( , )M M H T . Too
investigate the conditions under which the quiescent
solution is stable against small disturbances, we
consider a perturbed state such that

'V V
 

, ( ) 'bp p z p  ,   ( )bT T z T   ,

 ( )bH H z H  
  

,  ( )bM M z M  
  

              (6)
where the primed quantities represent the perturbed
variables. Following the standard linear stability
analysis procedure4 and noting that the principle of
exchange of stability is valid, the resulting
dimensionless equations are then found to be

   2 2 1 2 2 2 2
1t s tD a Da D a W a R M N z D a R            

 2 2 1 2 2 2 2
1 (1 2 ) 1 ( )t s tD a Da D a W a R M N z D a R            (7)

    2 2
2[ (1 2 ) 1](1 )sD a N z M A W       (8)

            2 2
3 0D a M D     .                          (9)

Here,  4 /t tR g d A     is the thermal Rayleigh

number,  / 2sN Q d    the dimensionless heat

source strength,  /f f     the ratio of viscosities,



 2/Da k d  the Darcy  number,  2
1 0 0/(1 ) tM K g     

the magnetic number,  2
2 0 0 0 1/(1 ) ( )M T K C   

the magnetic parameter,  3 0 0(1 / ) /(1 )M M H   
the measure of nonlinearity of the magnetization and
 0 1 0 2( ) / ( )A C C  . The typical value of  2M  for
magnetic fluids with different carrier liquids turns out
to be of the order of 10-6 and hence its effect is neglected
as compared to unity.

The boundary conditions, now take the
following form:  (1 ) 0W DW D D a        

(1 ) 0W DW D D a           at z = 0  (on the lower rigid boundary)

 2 (1 ) 0W D W D Bi D a           at

z = 1 (on the upper free boundary)
where  1/tBi h d k  is the Biot number. The case Bi = 0
and Bi  respectively correspond to constant heat
flux and isothermal conditions at the upper boundary.

3. Method of Solution :
Equations (7)-(9) together with boundary

conditions given by Eqs.(10a,b) constitute an
eigenvalue problem with thermal Rayleigh number  Rt

being an eigenvlaue. Accordingly, W,    and    are
written as
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where  iA ,  iB  and  iC  are unknown constants to be

determined. The basis functions  ( )iW z ,  ( )i z   and

 ( )i z   are generally chosen such that they satisfy
the corresponding boundary conditions but not the
differential equations. For lower boundary rigid and
upper boundary free boundaries, they are chosen
respectively as
 4 3 2 *

1( 5 / 2 3 / 2)i iW z z z T    ,  2 *
1( / 2)i iz z T   

 *
1( 1 / 2)i iz T            (12)

where   * 'iT s  are the modified Chebyshev polynomials.
This leads to a relation involving the characteristic

parameters tR , sN ,  , 1Da , 1M , 3M , Bi , 
and  a in the form
 1

1 3( , , , , , , , , ) 0t sf R N Da M M Bi a  .       (13)

The critical value of Rt (i.e., Rtc) is determined
numerically with respect to a  for different values of

Ns ,  , 1Da , 1M , 3M , Bi  and   .

4. Numerical Results and Discussion

The linear stability analysis has been carried
out to investigate the effect of internal heat generation
on the onset of thermomagnetic convection in a
horizontal ferrofluid saturated porous layer. The lower
boundary is rigid-insulating, while the upper boundary
is free with general thermal convection boundary
condition. The critical Rayleigh number Rtc and the
corresponding critical wave number ac are obtained
numerically using the Galerkin technique. The
convergence is obtained by using a eight order
Galerkin expansion of the trial functions.

The critical Rayleigh number Rtc and the
corresponding critical wave number ac are presented
graphically in Figs. 1-5. Figures 1(a) and 1(b)
respectively show the variation of Rtc and the
corresponding ac as a function of inverse of Darcy
number Da-1 for different values of heat transfer
coefficient Bi. It is seen that the Rtc increases with
increasing Da-1 and hence its effect is to delay the
onset of thermomagnetic convection. For a fixed
thickness of the porous layer, increase in the value of
Da-1 leads to decrease in the permeability of the porous
medium which in turn retards the flow of
thermomagnetic convection in a ferrofluid saturated
porous medium. Besides, it is observed that an
increase in the value of heat transfer coefficient Bi is
to increase the critical Rayleigh number and thus its
effect is to delay the onset of thermomagnetic
convection. This may be attributed to the fact that
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with increasing Bi, the thermal disturbances can easily
dissipate into the ambient surrounding due to a better
convective heat transfer coefficient at the top surface
and hence higher heating is required to make the
system unstable.  Figure 1(b) represents the
corresponding critical wave number ac and it indicates
that increase in the value of Bi and Da-1 is to increase
ac and thus its effect is to reduce the size of convection
cells.

The model that we have considered to
describe the flow in a porous medium rests on an
effective viscosity different from fluid viscosity. In the
present study, the ratio of these two viscosities is taken
as a separate parameter, denoted by  Λ , and found
that it has a profound  influence on the onset of
thermomagnetic convection in a ferrofluid saturated
porous medium. Figures 2(a) and 2(b), respectively
represent the variation of Rtc and the corresponding
ac as a function of Da-1 for various values of  Λ . From
Fig. 2(a), it is observed that an increase in the value of
viscosity ratio  Λ  is to delay the onset of thermomag-
netic convection. This is because; increase in the value
of  Λ  is related to increase in viscous effect which has
the tendency to retard the fluid flow and hence higher
heating is required for the onset of thermomagnetic
convection. In other words, higher value of  Λ  is more
effective in suppression of thermomagnetic convection
in a ferrofluid saturated porous medium. To the
contrary, increase in the value of  Λ  is to decrease  ac
and thus its effect is to increase the size of convection
cells (see Fig. 2(b)).

The effect of magnetic number M1 on the
onset of thermomagnetic convection is made clear in
Fig. 3(a) by presenting the critical Rayleigh number
Rtc as a function of Da-1. It is seen that an increase in
the value of magnetic number M1 is destabilizing
magnetic force on the system. In Fig. 3(b) plotted the
critical wave number ac as a function of inverse of
Darcy number Da-1 for different values of M1. It is
observed that an increase in the value of M1 is to
increase the value of ac and thus leads to reduce

dimension of the convection cells.

5. Conclusions

The onset of penetrative ferroconvection via
internal heating in a ferrofluid saturated Brinkman
porous layer is investigated. The lower boundary is
considered to be rigid – insulating to temperature
perturbations while the upper boundary is free and
subject to a general thermal condition on the perturbed
temperature. The resulting eigenvalue problem is
solved numerically by employing the Galerkin
technique. The effect of internal heating is to alter the
basic temperature distribution from linear to parabolic
with respect to porous layer height and found that it
has a profound effect on the stability characteristics
of the system.
The following conclusions can be drawn from the
present study:

(i)   The effect of increase in the internal heat source
strength Ns is to lower the critical thermal Rayleigh
number Rtc and hence to hasten the onset of
ferroconvection in  a ferrofluid saturated porous layer.
The critical stability parameters do not fit the empirical

equation  0 0/ / 1tc tc mc mcR R R R   as  3M 
in the presence of internal heating but otherwise found
to be true in its absence.
(ii)  The system becomes more unstable with an
increase in the value of magnetic number M1 and
nonlinearity of fluid magnetization parameter M3.
(iii) The critical thermal Rayleigh number Rtc increases
with an increase in the value of Biot number Bi, ratio
of viscosities  Λ , inverse Darcy number Da-1 as well
as magnetic susceptibility  and thus their effect is to
delay the onset of ferroconvection.
(iv) The effect of increase in Bi, Da-1,  M1 and Ns as
well as decrease in  Λ  and M3 is to increase the critical
wave number ac and hence their effect is to decrease
the dimension of convection cells.
(vi)  It is possible to either augment or suppress
ferroconvection in a porous medium by  tuning the
physical parameters of the system.
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Fig. 1 Variation of (a) Rtc  and (b) ac as a function of Da-1 for different values  of Bi when

2Ns  , 2Bi  , 1 2M  , 3 1M   and  = 0

Fig. 2 Variation of (a) Rtc  and (b) ac as a function of Da-1 for different values  of  Λ  when

2Ns  , 2Bi  , 1 2M  , 3 1M   and  = 0

Fig. 3 Variation of (a) Rtc  and (b) ac as a function of Da-1 for different values  of  M1 when

2sN  , 2Bi  , 1 2M  , 2   and  = 0
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Scope/Objective:
 Thermal convection of ferrofluids saturating a

porous medium has also attracted considerable
attention in the literature  owing to its importance
in controlled emplacement of liquids or treatment
chemicals, and emplacement of geophysically
imageble liquids into particular zones for
subsequent imaging etc.

 The practical problems cited above require a
mechanism to control thermomagnetic convection.
One of the mechanisms to control (suppress or
augment)  convection  is by maintaining a
nonuniform temperature gradient across the layer
of ferrofluid. Such a temperature gradient may arise
due to (i) uniform distribution of heat sources (ii)
transient heating or cooling at a boundary, (iii)
temperature modulation at the boundaries and so
on. Works have been carried out in this direction
but it is still in much-to-be desired state.

 The presence of internal heating deviate the basic
temperature, magnetic field intensity and
magnetization distributions from linear to nonlinear,
which in turn play a decisive role in understanding
control of thermomagnetic  convection.   Besides,
porous materials used in many technological
applications of practical importance possess high
permeability values.  Accordingly,  the flow in the
porous medium is described by the Brinkman-
Lapwood extended Darcy equation with fluid
viscosity different from effective or Brinkman
viscosity.

 The intent of the futuristic study is to investigate
nonlinear ferroconvection, effect of coriolis force
and modulation of temperature in a ferrofluid-
saturated with/or without porous layer in the
presence of internal heating. The presence of
internal heating deviate the basic temperature,
magnetic field intensity and magnetization
distributions from linear to parabolic with respect
to porous layer height, which in turn play a decisive
role in understanding control of ferroconvection.
Besides, porous materials used in many technological
applications of practical importance possess high
permeability values. For example, permeabilities of
compressed foams as high as  6 28 10 m  and for
a 1mm thick foam layer the equivalent Darcy number
is equal to 8 (see Nield et al.20 and references

therein21-24).
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