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Abstract

Extending the result of Bor(2016) and subsequently Majhi et al, a new result concerning absolute
indexed Riesz Summability factors, using quasi power increasing sequence, has been established.
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1. Introduction

A sequence(an ) of positive numbers is said to be almost increasing if there exists a positive sequence

(bn) and two positive constants A and B such that

(1.1) Ab,<a,<Bb, ,forall

ne
For 0 < B3 <1, itissaid to be quasi- 3 -power increasing, if there exists a constant K depending upon with

K >1 such that
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12 Knfa,>mfa, foralnzm.

In particular if B =0, then (an) is a quasi-increasing sequence. It is clear that for any non-
negative f3, every almost increasing sequence is a quasi-3-power increasing sequence. But the converse is not
true in general, as (n ’ﬂ) is quasi-3-power increasing but not almost increasing.

Let f :(fn) be a positive sequence of numbers. Then the positive sequence (an) is said to be
quasi-f-power increasing, if there exists a constant K depending upon f with K > 1 such that
@3) Kfoa =f a,

for n > m > 1. Clearly, if (an) is a quasi-f-power increasing sequence, then (an fn) is also a quasi- increasing
sequence.

Let Zan be a given infinite series with sequence of partial sums (sn ) and let (pn ) be a sequence of
positive numbers such that

n
P,= > p, >» asn—>mo,
v=0

The sequence to sequence transform

n
1
14 t, = anz_; b, S, , P,#0,

defines the sequence {tn} of the (N, pn)- mean of the sequence (Sn) generated by the sequence of

coefficients (pn) (see).

The series Zan is said to be summable ‘N, P, ) k=1 [1, if

k-1
= (P
(15) Z[_nj |tn _tn—1|k <o

n=1 pn

Let {0n } be any sequence of positive constants. The seriesis Zan said to be summable ‘W, Pn, 6 " k>18 if
c k
k-1
(16) Z(Qn) ‘tn —tn_l‘ < 00 ,
n=1

The series ) "a, issaid to be summable ‘N, P, 0, 1 ) k>1, u>0, if

uk +k -1

¥ Z (en) ‘tn _tn—l‘k <.
n=1
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If we take 12 =0, then ‘N, Pn ,Hn,u‘k — summability reduces to |N1 pn,9n|k — summability.

P — _
If we take 6, =—" and u=0then ‘N, Pn ,Hn,/l‘k — summability reduces to |N, p”|k — summability.
n

For any real ¥, the series Zan is said to be summable ‘N pn,Qn,u,y‘k k>1, u>0, if
0 7 (uk+k-1) ‘
s >.0,) t, —t, | < oo

n=1

For y=1, ‘N, pn,en,ﬂ,y‘k — summability reduces to ‘W Pn:6n, u‘k — summability .

2. Known Theorems :
Dealing with ‘N, Pn,6h ‘k — summability factors using a new general class of power increasing

sequences Bor? proved the following result.

2.1. Theorem - A
Let f =(f,) beasequence where f =n’(logn)’, n>0,0<0c <1. Let (,)eBV and

(Xn) be a quasi-f-power increasing sequence. Suppose also that there exists sequences (f,) and (ﬂn) such
that

211) |Adn|< B,
12 pB,—>0asn—-»>ow,

m
213) D naB,[Xy <o,
n=1

214) |An|X, =0@)

and {p,} is a sequence such that
215 P, =0(np,)

(216)  PyAp, =O(PnPni1)

@17 20 v s, =0(X,).a n >0
v=l
isfi OnPn e . Pudy
are satisfied and npipn is a non-increasing sequence, then the series ZanM is summable
np
n n

N, Py, 6,

k>1
k
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Subsequently, extending theorem —A, Majhi et al.,® has established the following theorem:

2.2. Theorem-B
Let f =(f,) beasequence where f_ =n?(logn)”, n>0,0< o <1.Let (1,)eBV and

(Xn) be a quasi- f — -power increasing sequence. Suppose that there exists sequences (4,) and (ﬂn) such
that

221) |Adn|< B,

22 B, —>0asn—->w,

m
(223) Zn\Aﬂn\xn <o,

n=1
224) |An|X, =0()
Further let (p, ) be a sequence such that
225 P, =0(np,)
(226)  PyApn =O(Pn Pryg)

@27) 20UV, “=0(X,) as n—> o
v=l
0 P, A
are satisfied and nP_pn be a non-increasing sequence. hen the series Zan NN is summable
np
n n

\N, pn,en,u\k,kzl,wo.

3. Main Result

In what follows in this paper, we proved a result concerning absolute indexed Riesz Summability

‘N, P, 0, 1, p‘k , k>1,u>0,p>0 of afactored series using f — power increasing sequence. We

prove:

Theorem 3.1
Let f =(f,) beasequence, where f, =n?(logn)”, n>0,0< o <1.Let (4,)eBV and

(Xn) be a quasi- f — -power increasing sequence. Suppose that there exists sequences (,) and (ﬂn) such

that
(311 |Ady|< B,

n

@12 pB,—>0asn—-»>wo,
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m
(313) Zn\Aﬁn [Xp <0,

n=1
314 |An|X, =0()
Further let (p, ) be a sequence such that
@15 P, =0(np,)
(316)  PyAp, =0(Pn Pryg)

3.17) Zn:(?f“’k*k’” v¥s [ =0(X,) asn -

y=

is summable

4 )
are satisfied and ”—p” be a non-increasing sequence. hen the series Za” n=n
Py npp

N, Py, 6,0 40| k21,1>0,0>0

In order to prove the theorem we require the following lemmas.

4.1. Lemma’
Under the conditionson (X ), (ﬂn) and ( ) as prescribed in the statement of the theorem

@11) nX,B,=00@)
and

@12 2 B.X, <.
n=1

4.2. Lemma®
If the conditions (3.1.5) and (3.1.6) are satisfied then

P, 1
A= | = O(_J
4.2.1) ( pnj o

5. Proof of the Theorem

o0

— a P4
Let (Tn) be the sequence of (N, pn) mean of the series E —N_07N Then by the definition, we have
NP
n=1

1 arPr A i” p )P
B Z Z Pr P;P - vp“//

v=l r=1

=}
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Hencefor n>1

n
Pn I:)L)fll:)v a, j’v
I:’n I:’nfl v=1 w,
Using Abel’s transformation, we get

1P A
n
n-1

:Ansn n Pn ZS PervaAlV ZPS /IVA[
n PP ) Y (v+)) Py+1 P I:)n -1 Y

=T+ T + T3+ T, (say).

Tn _Tnfl =

Tn _Tn—l -

] o 1;&%( ]

In order to prove the theorem, using Minkowski’s inequality it is enough to show that

0

z p(uk+k-1)

n=;

T [ <o, r=1234.

nr

Applying H 0 Ider’s inequality, we have
T k

30 O = 30 0 2, s

n=1 n=1

06, 2 [t s, |
n=1

=0() §A|,1n (6, v s
n=1 v=1

k +0Q) |Am|zr:,(9n )p(uk+k—1) - |Sn|k

=0(1)§|A;Ln|xn +0() |4, X, by (3.1.7)
n=1

=0(1)§[;nxn +0() |4, X, by (3.1.1)

=0(1) as m—oo.,bylemma4.1 and (3.1.4)
Next,

k

ZP s,AZ,

n v=l

k U krk1
0.1 p(; )
[ =owSi(0,) [P j =

m+1 K n-1 k
_o( 0 pluk+k1) [ Py 1 P,
( )Z( n) P Pnlil VZ:]; p ) Sv 14 v

n
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m+1 k n-1 k
so(l)Z(Qn)pW“)(%j Pl Z[P”j s
n=2

n n-1v=l |O v
k
I v J
S
-1 pv

- omi(
k
P
S
pv j

—0W(v.) " (vB.) (0,

v

k-1 k-1
K K pluk+k-y) [ P, B 1 & p,

v

k k| P, pluk+k-1) [ P, -
0 [y (2

k

:omi[

v

k

v

—o> (B, v (0, s

<

p(uk+k-1) S k

—O(l)ZA vB,) > (6,)" " P r s |+ o) (mg, i s,
(mB,) X, by (3.1.7)

m-1 m-1

=0 v[AB,| X, + 0@ B, X, +OM(MB )X
v=l y=1

=0() as M —> .

Again,
%(Qn) p(uk+k=1) O(l)z ,ukJrkl( nJ Pik{”z_ipvsv %}

K k| 1 & -
A
n y {PH;pv}
P k mal p k-1 p
k k|, [k p(uk+k-1)
14 l n n
IOJ L) IA n;(g”) {Pnj (PP j

n' n-1
p k-1 0 k-1
v -k p(uk+k-1) My
SRUNCENES

m+1 k n-1 k
- 1 P
Olz yk+k1(an z( VJ -
() I In_]_v:fl. pv

- omi(

k-1 k

A

14

Al

vV

v
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p(uk+k-1) (v)—k k

S

v

—0(1)Zﬁv X, +O00)|Am|X

v=l

=0() as m — .

Finally,
m+1 Kk m+ ek k 1 n-1 l k
0 (uk+k-1) p(uk+k-1) Fn o+ P M
nz:;t( n) Z:: (PnJ Pnk_]_vZ:;_ vSv v
m+1 Kk p k 1 n-1 i k
=0(1 ”*‘1(—”J— P.s, p, 2
( )z I:>n Pnk—l VZ:;‘ p v v
_on¥ (g, m LZ(P_] [V bl {LZ ; }
n=2 " Pn Pn_1 v=1 pv ! Y Pn_1 v=1 Y
m = k 1 k-1
=0(1)2( J vils el S (0, [p—]
v=1 v R/ I:>v

k

=0(1)Zm:(ev) WD s 1414,
m-1

- 0(1)2 By X, + O Am|X m
v=1

as =0(1) as m —> oo,
This completes the proof of the theorem.

6. Conclusion

Our Theorem generalizes Theorem-A and Theorem-B. Putting p =1, Theorem-B becomes a particular
case of our Theorem. Putting £ =0 and p =1, Theorem-A becomes a particular result of our Theorem. One

can extend our result for Indexed Norlund Summability with different parameters.
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