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Abstract

This paper analyzes a simple symmetric random walk with finite steps in d-dimensional integer lattice,
ℤ݀   and introduces one of its applications. It focuses on the total number of ways in which the walk can be

accomplished. The number of ways of accomplishment is used to find the probabilities associated with all
possible outcomes as a generalization of the probability associated with return to origin. In addition, the paper
discusses on the total number of possible outcomes. (Since the walk is executed in  ℤ݀ , all the outcomes are
integer points.) It provides an insight into the distribution of the integer lattice,  ℤ݀ .

Keywords : allowed outcomes, fundamental integer lattice, initial condition, probability distribution
function, and simple symmetric random walk.
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1. Introduction

The theory of random walk studies stochastic processes formed by the successive summation of
independent and identically distributed random variables7.  A simple random walk is a walk that is characterized
by  a  fixed size of each random variable, step. Moreover, the direction is random12. If the walk is equally
probable in all possible direction, it is symmetric8. The purpose of this paper is to study a simple symmetric
random walk with a finite number of steps, each of unit size, in d-dimensional integer lattice, ℤ݀ . Here, the
integer lattice, ℤ݀ , refers to a set of integer points

ݔ = 1ݔ) 2ݔ, , … , ݔ ,(݀ݔ ݅ =   integer for ݅ = 1, 2, … , ݀, 
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in d-dimensional space,  ℤ݀  4.
The study of simple symmetric random walk in d-dimensional integer lattice, ℤ݀ , deals with ideas like

return to the origin, Bernoulli walk,  range of  random walk, recurrence, transience etc. 6-10.  In this paper, our
focus is on  possible outcomes of the walk and future outcomes of the simple symmetric random walk with a
finite number of steps. Further, we discuss on the probabilities associated with each of them. This generalizes
the probability distribution function of the walk from return to the origin to the occurrence of every outcome. It
is noticed that the probability distribution function in 1-dimensional integer lattice, ℤ,݀ reduces to Bernoulli
distribution. Finally  author  uses the concepts of length, concepts of equations of circles, spheres, and the like
in taxicab geometry1-2 to describe the distribution of integer points in -dimensional integer lattice, ℤ݀.

2. Definitions and Notations :
Before getting into the details of the main propositions, some definitions need to be addressed.
In this paper, much of our discussion will revolve around the simple symmetric random walk. Therefore,

throughout when a walk is referred, it means mean a simple symmetric random walk unless otherwise noted.
Moreover, the size of a step is considered to be one unit.

Definition 2.1. The number of steps assigned for a walk is called initial condition. |݊|  represents the
initial condition. If  ݊  is negative, how a walk was accomplished is predicted. In contrast, if  is positive, how a
walk will be accomplished is predicted. For convenience, it is assumed that the walk starts at the origin when the
future is predicted and that it terminates at the origin when the past is predicted.

Definition 2.2. When the initial condition of a walk that is accomplished is known, the integer points
where the walk started can be predicted. These outcomes are called allowed past outcomes. Similarly, when the
initial condition of walk that is to be accomplished is known, the possible integer points where the walk will
terminate can be predicted. These integer points are called allowed future outcomes.

|ܵ݊| = ,1ݔ) 2ݔ , … represents an allowed outcome of a walk with an initial condition, |݊|  in ℤ݀  (݀ݔ, .

The superscript of  ݅ݔ , (݅ = 1, 2, … , ݀)   represents that xi steps are mandatorily required (from the origin) to be

executed in an ith direction (for the occurrence of discussed outcome). Moreover, ห൛ |ܵ݊ |ൟห݀   represents the
number of allowed outcomes of the walk.

ܲ(ܵ|݊ | = 1ݔ) ,2ݔ, … , ݀ݔ ))  represents the probability of occurrence of the outcome,

|ܵ݊| = 1ݔ) ,2ݔ, … , ݀ݔ ),  of a walk with  an initial condition, |݊|  in ℤ݀. It is a measure that describes how probable
the allowed future outcome or allowed past outcome is accordingly as n is positive or negative.

Definition 2.3. The length between two integer points,  ݔ = 1ݔ) , 2ݔ , … ݕ and (݀ݔ, = 1ݕ) , 2ݕ , … , (݀ݕ

in taxicab geometry is, is, ݀݅(ݕ,ݔ)ܶݐݏ = ∑ ห݅ݔ − ห݀݅ݕ
݅=1   1-2.  It is the most minimum number of steps, each of unit

size, required to reach y  from x or vice versa. Using this definition of length, a concept of oddness and
evenness, parity, of an integer point in taxicab geometry.

The parity of an integer point (1ݔ ,2ݔ, … is defined as oddness or evenness of the length between  (݀ݔ,

the integer point and the origin, (0,0, … , ,ݔ)ܶݐݏ݅݀ ,in taxicab geometry. Here, Here (ݏ݉ݎ݁ݐ ݀ ݋ݐ ݌ݑ 0) = ∑ ห݅ݔ − 0ห݀
݅=1  

describes the parity of the point, (1ݔ ,2ݔ, … ..so that it is called the parity number , (݀ݔ,

Definition 2.4. The most extreme integer points, (1ݔ ,2ݔ, … among the allowed outcomes of a , (݀ݔ,
walk are called boundaries. Broadly, those allowed outcomes which require require ∑ หݔ ݅ห݀

݅=1 = |݊|  number of steps
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(from the origin) of a walk with an initial condition, |݊|  in ℤ݀  are called boundaries [Definition 2.3].

݊|ܤ | = ,1ݔ) ,2ݔ … , ݊|ܤrepresents boundaries of the walk. ห൛  (݀ݔ |ൟห݀   represents the number of boundaries of the

walk with an initial condition, |݊|  in ℤ݀.
Up to this point, some basic terms and some notations have been introduced. In the following section,

a lemma to prove a proposition about the probability distribution function for all allowed outcomes of a walk
with the initial condition, |݊|  in ℤ݀   is introduced. Then, the number of allowed outcomes of the walk is dealt.

1. Propositions :
Lemma 3.1. The total number of possible ways for the accomplishment of a walk with an initial

condition,|݊|, in  ℤ݀ , is (2݀)|݊| .
Proof: There are 2d degrees of freedom of direction at the initial point of the walk  in ℤ݀ . It is the same

case after the execution of each step6. Using the multiplicative principle of counting, the number of ways that
a walk with an initial condition, |݊|, can be executed is 2݀ × 2݀ ×  |݊|Thus, there are (2݀)  . ݏ݉ݎ݁ݐ |݊| ݋ݐ݌ݑ…
ways for the accomplishment of the walk.

Proposition 3.2. The probability of  occurrence of an allowed outcome, |ܵ݊| = 1ݔ) , 2ݔ , … of a , (݀ݔ,
walk with an initial condition, |݊|, in ℤ݀ , is

ቀ |ܵ݊ | = 1ݔ) ,2ݔ, … ቁ(݀ݔ, = 1
(2݀)|݊ | ൜∑

(|݊|)!
݀ݔห)…!2ݎ!(2ݎ+|2ݔ|)!1ݎ!(1ݎ+|1ݔ|) ห+݀ݎ ݀ݎ!( !

ൠ. 

     Here (1ݎ , , 2ݎ … , ݎ݀ ) is a ݀-tuple such that  ∑ ݀ݎ݅
݅=1 = |݊ |−∑ หݔ ݅ ห݀

݅=1
2

 and ݅ݎ  is a non-negative integer. 
Proof: To find the probability of occurrence of an allowed outcome, we need  to discuss the number of

ways of a walk that results in the outcome. Firstly let us describe the direction of execution of each step. The
sequence of execution is random, however.  Finally, let us use combinatorics to calculate the number of
contributing ways.

(For our  positive n [Definition 2.1] So, the absolute sign is dropped down for now.)
Let  ܵ݊ = ,1ݔ) 2ݔ , … be an allowed outcome of a walk with an initial condition, n, in ℤ݀  (݀ݔ, . The outcome

mandatorily requires a length of  ݀ ,ݔ)ܶݐݏ݅ 0) = ∑ ห݅ݔ − 0ห݀
݅=1   to be described [Definition 2.3.]. It means ∑ หݔ ݅ห݀

݅=1  

number of steps: xi in an ith direction is executed for the outcome to occur [Definition 2.2.]—[Definition 2.3.].

Rest of the steps, , ൫݊ − ∑ ห݅ݔห݀
݅=1 ൯,  should be executed so that there is an equalization5 (It gives a sense

that execution of rest of the steps should not contribute the walk extra steps so that the outcome does not differ
from ܵ݊ = 1ݔ) ,2ݔ, … , For equalization, there should be an equal number of steps executed in both   .((݀ݔ
positive and negative direction  of any of d directions. (It implies that the number of remaining steps has even
parity. Because the difference between n and  ∑ ห݅ݔห݀

݅=1    is even, the parity of initial condition, n, is same to that
of the allowed outcome [Definition 2.3.]) The freedom in choosing any of d directions make us form d-tuple of

the number of steps out of  ݊ − ∑ ห݅ݔห݀
݅=1

2
   steps executed each in positive directions and negative directions

selected randomly.
Let (1ݎ , 2ݎ  ,  … , ݎ݀  )  be one of such d-tuples that  ݅ݎ  (݅ = 1, 2, … , ݀)  is executed each in ith positive

direction and negative direction. Because the sum of the number of steps executed in positive and negative



direction should be equal to the number of remaining steps, ∑ ݀ݎ݅
݅=1 = ݊−∑ หݔ ݅ ห݀

݅=1
2

.   If xi is non-negative, (ห݅ݔห + ݎ݅ ) 

steps are executed in an ith positive direction and ri in the ith negative direction. If xi is negative, (ห݅ݔห + ݎ݅ ) 

steps are executed in the ith negative direction. In contrast, if executed  in an ith positive direction. Now, the
directions of execution of each step have been described. A similar discussion can be done with different

ordered sets of  (r1, r2,..., rd) that can be formed by the constraint, , ∑ ݀ݎ݅
݅=1 = ݊−∑ หݔ ݅ห݀

݅=1
2

..

The number of ordered execution of n steps along different directions as discussed is

∑ ݊!
݀ݔห)…!2ݎ!(2ݎ+|2ݔ|)!1ݎ!(1ݎ+|1ݔ|) ห+݀ݎ!(݀ݎ !

.  Here, the d-tuple (r1, r2,..., rd) can be varied with the help of the constraint,

, ∑ ݀ݎ݅
݅=1 = ݊−∑ หݔ ݅ห݀

݅=1
2

.. So, summation, , is required. A similar discussion that deals with the past can be done

when n is negative, except that |݊| replaces n.

         The number of ordered execution of |݊| steps along different directions, ෍ |݊|!
|1ݔ|) + !(1ݎ !1ݎ |2ݔ|) + !(2ݎ !2ݎ … |݀ݔ|) + ݎ݀ )! ݎ݀ !

 ,

is the number of ways that contribute the walk for the occurrence of the allowed outcome, |ܵ݊| = 1ݔ) , 2ݔ , … . (݀ݔ,
Because there are (2݀)|݊|  ways for  accomplishment of the walk [Lemma 3.1.], the probability that the allowed

outcome, |ܵ݊| = 1ݔ) , 2ݔ , … occurs is , (݀ݔ,

     ܲ ቀ |ܵ݊ | = ,1ݔ) 2ݔ , … ቁ(݀ݔ, =
1

(2݀)|݊ | ቊ෍
(|݊|)!

|1ݔ|) + !(1ݎ !1ݎ |2ݔ|) + !(2ݎ !2ݎ … ݀ݔ|) | + ݎ݀ )! ݎ݀ !
ቋ    (3.2a)

     Here  (r1, r2,..., rd) is a d-tuple such that ri is a non-negative integer and ∑ ݀ݎ݅
݅=1 = |݊|−∑ หݔ ݅ ห݀

݅=1
2

. 

In eq. 3.2.a., |ܵ݊| = 1ݔ) , 2ݔ , … is actually an arbitrary allowed outcome of a walk. Thus, it is the   (݀ݔ,
probability distribution function for a walk with an initial condition, |݊|  in ℤ݀

 Corollary 3.2.1.  In ℤ, the constraint  ∑ ݀ݎ݅
݅=1 = |݊ |−∑ หݔ ݅ ห݀

݅=1
2

  reduces to 1ݎ = |݊|−ห1ݔห
2

,  and

|ܵ݊| = 1ݔ) , 2ݔ , … ݊ܵ| reduces to  (݀ݔ, | = Thus, the probability distribution function reduces to .(1ݔ)

           
ܲ ቀ |ܵ݊ | = ቁ(1ݔ) = 1

(2)|݊ |
(|݊ |)!

൬
|݊ |+ห1ݔห

2 ൰!൬
|݊ |−ห1ݔห

2 ൰!
.  

 (3.2.1.a.)

This is the Bernoulli distribution function10. When the initial condition is 2|n| and S2|n| =(0), eq.
3.2.1.a. reduces to

   ܲ ቀܵ2|݊ | = (0)ቁ = 1
(2)2|݊ | ቀ

2|݊|
|݊ | ቁ.       (3.2.1.b.)

 This is the probability of return to the origin5.
Lemma 3.3. The total number of allowed outcomes of a walk with an initial condition, |n| , in ℤ is

ห൛ |ܵ݊|ൟห1 = ݔ + 1 
Proof: The number of allowed outcomes of a walk is constrained by the initial condition, |n|. Proposition

3.2 (par. 3) discusses that the initial condition and the allowed outcomes have  same parity. So, the set of allowed
outcomes in one dimensional integer lattice, ℤ, is  {(−|݊|), (−|݊| + 2), … , (|݊| − 2), (|݊|)} 12.

When |n| = 1, the set of allowed outcomes is {S1} = {(1), (1)}. So, |{S1}|1 = 2 = 1+1.
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When |n| = 2, the set of allowed outcomes is {S2} = {(2), (0), (2)}. So, |{S2}|1 = 3 = 2+1.

Let the proposition be true when |݊| = k. The set of allowed outcomes is {Sk} = {( k), ( k+2),
..., (k 2), (k)}. Moreover, |{Sk}|1 = k + 1.

Since the initial condition and the allowed outcomes have  same parity, and because the supposition
that the proposition is true when |݊| = k, is needed to be used, let us check whether it is true when
|݊| = k + 2.  The set of allowed outcomes is {Sk+2} = {( k 2), ( k), ( k  2), ..., (k 2), (k),
(k+2)}. There are two allowed outcomes: ( k 2) and (k  2) more than that of {Sk}. It is obvious that
|{ܵ݇+2}|1 = |{ܵ݇}|1 + 2 = (݇ + 1) + 2 = (݇ + 2) + 1 ,  which is true.

So, for a walk with an initial condition, |݊|, in ℤ ,݀ the total number of allowed outcomes is
ห൛ |ܵ݊ |ൟห1 = ݔ + 1.        (3.3.a.)

Lemma 3.4. The total number of boundaries of a walk with an initial condition, |n|, in ℤ݀  is
ห൛ܤ|݊|ൟห݀ = ห൛ |ܵ݊ |ൟห݀ − ห൛ |ܵ݊ |−2ൟห݀ . 

Proof: The number and parity of allowed outcomes are constrained by the initial condition, so the
allowed outcomes of a walk with an initial condition,|݊| , and a walk with an initial condition, |݊|  2, have
same parity.

If 2 steps out of |݊|  steps undergo equalization, the former walk seems to be the later walk. It can be
inferred that the allowed outcomes of a walk with an initial condition |݊|  2 are the allowed outcomes of a walk
with an initial condition |݊| .

In contrast, if the discussed 2  steps   do not undergo equalization, and contribute 2 steps to each
allowed outcome of the walk (that seemed to be a walk) with the initial condition |݊|  2, it results in the
boundaries of the walk with initial condition |݊|   as allowed outcomes. It is obvious that for a walk with an initial
condition, |݊| , in  ℤ݀ , we get the total number of boundaries when the total number of the allowed outcomes of
the former walk, is subtracted from the total number of the allowed outcomes of the latter one. That is,

                 ห൛ܤ|݊|ൟห݀ = ห൛ܵ|݊|ൟห݀ − ห൛ܵ|݊|−2ൟห݀ .           (3.4.a.)
Note: The formula holds good for all nonzero integers because  the distribution of the boundaries,

݊|ܤ | = 1ݔ) 2ݔ, , … , ,is similar for any initial condition. The distribution is described by the equation  ,(݀ݔ

                     ∑ ห݅ݔห݀
݅=1 = |݊|.           (3.4.b.)

Because  a walk with an initial  condition, , is certain to be at the initial  position8, it is not actually a
random walk. That is the formula does not hold good for the initial condition, 0, however.

Here  eq. 3.4.b. represents circles, spheres, and hyperspheres centered at origin and radius |n|  in two-
dimensional taxicab geometry, three-dimensional taxicab geometry and higher dimensional taxicab geometry
respectively3-9-11. It means eq. 3.4.b. describes the distribution of integer points with same parity number
[Definition 2.3.].

Corollary 3.4.1.  There are two boundaries of a walk in ℤ. We can calculate using eq. 3.3.a when
|n| = k and when |n| = k  2 and subtracting the latter one  from the former one to get two boundaries.

It is difficult to calculate the number of allowed outcomes by considering only the facts that the walk
is executed in ℤ݀   and the initial condition is |n|.  We have in our hand the total number of allowed outcomes of
a walk with a finite initial condition in ℤ. This information can be used to calculate the number of allowed
outcomes of a walk in ℤ݀  . The calculation is recursive which means  the numbers of allowed outcomes in
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lower dimensional integer lattices are required to calculate  the number of  allowed outcomes in higher dimensional
integer lattice.

The basic concept of calculating the number of allowed outcomes of a walk with the initial condition,
|n|, in ℤ݀    is: Let us consider an f-dimensional integer lattice, ℤ݂,  is less than d, and perform the walk. An integer

point  (1ݔ ,2ݔ, … , in ℤ݂  (݂ݔ   mandatorily requires ∑ ห݅ݔห݂
݅=1   number of steps [Definition 2.3.], so, the  point,

1ݔ) ,2ݔ, … ∑  d),  is constrained byݔ, ห݅ݔห݂
݅=1 ≤ |݊|. I If there are remaining steps, they can be used as initial

condition for a walk in an extra (f  d)-dimensional integer lattice, ℤ݂−݀ . We can find the total number of
allowed outcomes of this walk (It is assumed that the formula to calculate the number allowed outcomes in ℤ݂−݀  
and in ℤ݂ are known) and sum up all the allowed outcomes contributed by the integer points that is constrained

by ∑ ห݅ݔห݂
݅=1 ≤ |݊|. 

Definition 3.5. Let us consider a walk with an initial condition, |n|, in ℤ݀ . An f -dimensional integer
lattice, ℤ݂−, f  is less than d, integer points of which we consider as originas for further  walk in an extra (f  d)-
dimensional integer lattice, ℤ݂−݀  , to calculate the total number of allowed outcomes of the walk in ℤ݀  is called
fundamental integer lattice.
           Proposition 3.6. The total number of allowed outcomes of a walk with an initial condition, |n|, in ℤ݀  is,

              ห൛ |ܵ݊|ൟห݀ = ห൛ |ܵ݊ |ൟห݀−݂ + ෍ቀ|{݅ܤ}|݂ ห൛ܵ|݊|−݅ൟห݀−݂ቁ
|݊ |

݅=1

 

Here, ℤ݂− is a fundamental integer lattice, and  is less than . It is assumed that ห൛ܵ|݊|ൟห݀−݂   and

݂|{݅ܤ}|    are known.
Proof: Let us consider  a walk with an initial condition, |n|,  in ℤ݂−. Let the walk after  execution of

∑ หݔ ݅ห݂
݅=1   number of steps without equalization be at ܤቀ∑ หݔ ݅ห݂

݅=1 ቁ = ,1ݔ) 2ݔ , … Each of the .[.Definition 2.4]  (݂ݔ,

integer points in ℤ݂− has an extra  (f  d)-dimensional integer lattice, ℤ݂−݀  , for  execution of  ൫|݊| −∑ ห݅ݔห݂
݅=1 ൯ 

steps, and can contribute  ฬ൜ܵቀ|݊ |−∑ หݔ ݅ห݂
݅=1 ቁൠฬ

݀−݂
  allowed outcomes. The total contribution made by integer

points represented by ܤቀ∑ หݔ ݅ห݂
݅=1 ቁ = ,1ݔ) ,2ݔ … , ݀−in ℤ݂ (݂ݔ  is ฬ൜ܤቀ∑ หݔ ݅ห݂

݅=1 ቁൠฬ
݂
  ൠฬ ฬ൜ܵቀ|݊|−∑ หݔ ݅ ห݂

݅=1 ቁൠฬ
݀−݂

  But  ∑ หݔ ݅ห݂
݅=1   

can be varied by the constraint ∑ ห݅ݔห݂
݅=1 ≤ |݊|.  Because B0 does not hold good [Lemma 3.4.],

1 ≤ ∑ ห݅ݔห݂
݅=1 ≤ |݊|. Th Thus, the total number of allowed outcomes contributed by the discussed integer points

of ℤ݂−݀ (except the origin of  ℤ݂−݀ ) is

∑ ቀ|{݅ܤ}|݂ ห൛ |ܵ݊|−݅ൟห݀−݂ቁ
|݊ |
݅=1   (3.6.a)

The walk at the origin of ℤ݂− has |n| steps that can be executed in ℤ݂−݀ .  So, the number of allowed
outcomes contributed by the origin is
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   ห൛ |ܵ݊ |ൟห݀−݂  (3.6.b)

Finally, the total number of allowed outcomes of a walk with initial condition |n|, in  ℤ݂−݀  is the sum of
eq. 3.6.a. and eq. 3.6.b. So,

                  ห൛ܵ|݊|ൟห݀ = ห൛ |ܵ݊ |ൟห݀−݂ + ∑ ቀ|{݅ܤ}|݂ ห൛ |ܵ݊ |−݅ൟห݀−݂ቁ
|݊|
݅=1  (3.6.c)

Where  ℤ  ݂ is a fundamental integer lattice, and f is less than d.
Corollary 3.6.1. The total number of allowed outcomes of a walk with initial condition, |n|, in ℤ2, is,

                         ห൛ |ܵ݊|ൟห2 = (|݊| + 1)2. 

Proof: Let the fundamental space be ℤ such that |{Bi }|1 = 2 [Corollary 3.4.1], |{S|n|i) }|1 = (|n|  i + 1)  and
|{S|n|) }|1 = (|n| + 1) [Lemma 3.3.]. Now using these quantities in eq. 3.6.c., we get,

      ห൛ |ܵ݊|ൟห2 = (|݊| + 1) + ෍ 2(|݊| − ݅ + 1)
|݊|

݅=1

 

                 ห൛ |ܵ݊ |ൟห2 = (|݊| + 1)2.   (3.6.1.a.)
This method can be used similarly to calculate the number of allowed outcomes of a walk in higher

dimensional integer lattice, ℤ݀.

4. Conclusion and Future Work

The paper analyzed a simple symmetric random walk of finite steps in ℤ݀  and got some generalized
results. It broadened the probability distribution function of the walk from the return to origin to all the possible
outcomes of the walk. Moreover, it discussed the number of allowed outcomes. It gave an insight into the
number of integer points (1ݔ , 2ݔ , … , having the same parity, or having the same parity number. The equation  (݀ݔ
 ∑ หݔ ݅ห݀

݅=1 = |݊|  explained the distribution of integer points in ℤ݀.
One direction for the future work could be to explore the properties of circles, spheres and the like in

taxicab geometry. In this paper, only the integer lattice is considered for the random walk. It can be generalized
to other ordered lattices, however. In addition  outcomes of a walk with infinite steps as initial condition along
with the probability associated with them can be studied.
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