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Abstract

In this paper, an approximate analytical solution is obtained for the unsteady mixed convection flow
near the stagnation region of a heated vertical plate. The unsteadiness in the flow field is caused by impulsively
creating motion in the free stream and at the same time suddenly raising the surface heat flux above its
surroundings. This study gains importance when the buoyancy forces due to the temperature difference
between the surface and the free stream become large. The Homotopy Analysis Method (HAM) is applied to
solve the coupled system of non linear partial differential equations for analytical solutions. The numerical
results of the flow are computed using the Keller-Box Method (KBM). A detailed error analysis is performed to
compute the total average squared residual errors for velocity and temperature. It is shown that a more accurate
solution can be obtained with least computational effort by the computed approximate analytical series solution
of velocity and temperature.

Keywords: Non-similar; Impulsive motion; Stagnation point; KBM; HAM for PDE.
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Introduction

The study of mixed convection (combination of free and forced convection) flow over a semi-infinite
vertical plate has received considerable research interest due to its industrial and technical applications in solar
receivers exposed to wind currents, electronic devices cooled by fans.

The two-dimensional stagnation point flow in a mixed convection refers to the flow in the vicinity of a
stagnation line that result from a two-dimensional flow impinging on a surface at right angles and flowing there
after symmetrically about the stagnation line. Consequently, both the flow and temperature are significantly
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affected by the buoyancy forces.

The importance of studying the unsteady non-similar boundary layer flow near stagnation region is
that, the heat transfer is maximum near the stagnation region. In many problems the flow may be unsteady
which might be caused by the change in the free stream velocity or in the surface temperature (surface heat flux)
or in both. When there is an impulsive change in the velocity field, the inviscid flow is developed instantaneously,
but the flow in the viscous layer near the wall is developed slowly which becomes fully developed steady flow
after sometime. For lower time the flow is dominated by the viscous forces and the unsteady acceleration, but
for large time it is dominated by the viscous forces, the pressure gradient and the convective acceleration. For
lower time the flow is generally independent of the conditions far upstream and at the leading edge or at the
stagnation point and for large time the flow depends on these conditions. Thus, unsteadiness influences the
flow and heat transfer to a great extent.

There are several studies related to flow near stagnation region in the literature. To list a few related to
the present study, the unsteady mixed convection flow near stagnation region of a heated vertical plate with
thermal dissipation effects has been investigated by Alharbi et al.l. Beg et al.? presented the cross-diffusion
effects on mixed convection, heat and species transfer boundary layer flow due to a inclined plate numerically.

The unsteady, mixed convection flow near the stagnation point on vertical plate in a two-dimensional
flow has been studied by the authors Kumari etal.” Lok et al.* and Ramachandran et al.’3, The two-dimensional
non-similarity boundary layer flow has been investigated under different aspects by Kousar et al.®, Liao%%1°,
Motsa®? and Seshadri et al.™.

Recently, Shafie et al.’® studied the non-similarity boundary layer flow including the effect of
thermophoresis and injection/suction in the stagnation point with micropolar fluid due to a moving plate and
given numerical solution using implicit finite difference method. Srinivasacharya et al.1’ presented the natural
convection flow of non-similar solution with effect of thermophoresis and Brownian motion due toa doubly
stratified porous medium and solved the governing equations numerically using a Keller-Box method. This
method was initially introduced by Keller et al.® and subsequently this idea was further exposed by Cebeci et
al 3.

Two-dimensional unsteady, boundary layer flow near the stagnation region of a flat plate has been
studied by Williams et al.28, Two-dimensional non similar boundary layer flow near a stagnation region has
been solved analytically by Xu et al.*° and You et al.?°. Two-dimensional similarity boundary layer flow of non-
Newtonian incompressible viscoelastic fluid due to a continuous stretching surface has been solved analytically
by Seshadri et al.’®. The highly nonlinear differential equation has been solved with help of ADM and HAM by
Elsaid®. But in all the above research papers cited there is no analytical solution for the flow and temperature of
the mixed convection flow due to impulsive motion near the stagnation region. Moreover, the application of
HAM to non linear coupled partial differential equations to obtain analytical form of solutions is not done by
many researchers. Hence, the present study is significant in using advanced HAM procedure to compute an
approximate analytical solution to coupled non linear partial differential equations.

This paper is outlined as follows. In Section 2, the aim of study is presented. We consider the problem
formulation and governing equations in Section 3. In Section 4, we describe the standard HAM solution
procedure for solving the present non-linear partial differential equations (PDEs). Along the way, in Section 5,
the procedure of Keller-Box Method (KBM) solving for PDEs is presented. We shall make several observations
on study variables and physical parameters in the solution series, and some of these summarized in the results
and discussion, which are presented in Section 6. Finally, we presented conclusion in Section 7.
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Present Study :

The aim of this paper is to study the development of flow and heat transfer near the stagnation region
in the presence of buoyancy forces over a heated vertical plate. The unsteadiness in the flow field is caused
by impulsively creating motion in the free stream and at the same time suddenly raising the surface temperature
(heat flux) above its surroundings. The problem is formulated in such a way that at t = Q it is represented by the
Rayleigh type of equation and for T — T, it is represented by the Hiemenz type of equation. The partial
differential equations governing the flow and the heat transfer have been solved analytically using the HAM
and numerically by Keller Box Method. Particular cases of the present results are compared with those of
Seshadri et al.}*. HAM solutions are always represented as a power series form in which the coefficients
contain the study parameters. In our analysis the various study parameters considered are the buoyancy
parameter (1), Unsteadiness in the flow (t) and Prandtl number (Pr). We have also computed the numerical
solutions for our governing equations using Keller-Box method (KBM).

Problem Formulation and Governing Equation :
Consider a semi-infinite vertical plate which is placed in an ambient fluid with uniform temperature T .

At t = 0 the fluid is impulsively moved with a velocity Ue and at the same time the surface temperature or heat
flux is suddenlyraised. Figure 1 show a flow field over a heated vertical surface where the upper half of the flow
field is assisted by the buoyancy force, but the lower part is opposed by the buoyancy force. The reverse trend
appears if the plate is cooled from below. The results illustrated here are valid for both cases. The surface of the
plate is assumed to have an arbitrary temperature or it is subjected to an arbitrary heat flux. Under the above
assumptions and considering Boussinesq approximations, the unsteady laminar boundary layer equations

governing the mixed convection flow are given by Ramachandran et al. .

U+ vy, =0, (1)
ue +uu, + vu, =U.(U,), +vuy,, + ga(T —T,) @)
T, +ul, + VI, =BT, (3)

The initial conditions for the problem when t < 0 are:

- .:..:.(

FIGURE 1. The coordinate system of flow model.

u(x,y) =v(x,y)=0  T(xy) =T, (4)
The boundary conditions for the problem when t > 0 are:

u(x,y) =v(x,y) =0,u(x,»o) =U, = ax,a > 0.
T(x,0) =T,, T(x,0) =T,(x) =bx",p>0 n=>0 ©)
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for the prescribed surface temperature (PST case) and
-k aTa(;’O) = q,(x) =cx"™, ¢c>0, )
for the prescribed surface heat flux (PHF case).

The indices n = 1 and n =0 correspond the linear surface temperature and the co- nstant surface
temperatures, respectively.

Here x and y are distances along and normal to the surface, respectively, u and v are the components
of the velocity along the x-and y-directions, respectively. T, k, v, q,,, &, g and [ are the temperature, thermal
conductivity, kinematic viscosity , surface heat transfer, coefficient of volumetric thermal expansion, the
gravitational fluid acceleration and the thermal diffusivity, respectively; Subscripts e, co and w are the conditions
at the edge of the boundary layer, at the free stream and in the surface, respectively. The subscriptst, x and y
denote the derivatives with respect to the t, x and y, respectively.

It is worth mentioning here that we encountered certain difficulties in formulating the boundary layer

1
problem in the presence of impulsive motion. We used the scaling of Q = y/(tv)2 t*=ugt/X for small-time

1
solution as well as for large-time solution for the scale n = yu,/(vx)2. If the boundary layer problem is
formulated in (Q, t*)-system, the small-time solution fits in properly, but the large-time solution does not fit.

1
Therefore we have to find a scaling of the y coordinate which behaves like y/(tv)2 for small-time solution and

1
as yu,/(vx)z for large-time solution. Then it was realized that if we take the time scale & then the region of time

integration may become finite. Such transformations has been reported by the author Seshadri et al.X* as
follows.

n =y(E)©=

where § =1—e7t" t*=at, a>0,

u(x,y,t) = axF'(n, &),

v(x,y,t) = — (av)*’?(§)2 F(n,¢) and
T, y,t) = T+ (T, — T)G(n,$).

(PST Case)
1

T@y,0) = T+ (2) *(qu /)6, ).
(PHF Case).

Substituting these similarity transformations into (2)—(3), we find that (1) is identically satisfied and
(2)-(3) are reduced to the following system of non-linear partial differential equations.

F" +27 (A —OF +& (1= (F)2 + FF' + AG) —§(1 — f)‘;—’; =0, @

6" +27 (1 — YG'Pr +&(FG —nF'6) Pr—Pre(1-9 % =o ®
The boundary conditions (5) reduces to,
F(0,&) =F'(0,§) = 0, F'(%,§) =1,6(0,&) =1, G(0,&) = 0. (PST Case)
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G'(0,§) = —1.  (PHFCase) ©)

Here F is the dimensionless velocity. Fand G are the dimensionless stream function and temperature,
respectively and prime denotes derivative with respect to n, and the constants are

Pr=2, Re, = ax? 5 = AT . (PST Case)and » = il (PHF Case), where 6% = ga(T,, — T.)x/v®

7 e P Rele REXS/Z

and Gr*, = gaqwx4/k1)3.
Where Pr is the Prandtl number, A is the buoyancy parameter, Rey is the local Reynolds number, 1 is
the pseudo-similarity variable and a, b and c are the constants; t and t* are the dimensional and dimensionless

times, respectively; Gry and Gr’y are the Grashof numbers for the PST and PHF cases, respectively.
It can be seen that the buoyancy parameter A is the function of stream wise distance x unless the

surface temperature T, — T, and the surface heat flux g, vary linearly with x (i.e., N=1). For n=1, 1is

constant. Inparticular, b = ¢ = agaz, then A = 1. Hence for the self-similar solution both T,, — T.,and

should vary linearly with x (i.e., n = 1). For n# 1 the equations are locally self-similar.
The local Skin friction coefficient on the surface in terms of the shear stress can be expressed as

. = 2u <6u>
4 pUe2 ay y=0

= 2(¢Re,) 2F"(0,8), &>0.
The heat transfer coefficients in terms of the Nusselt number for PST and PHF cases are

N X <8T>
U= ———(—
(Tw - TOO) ay y=0

= (Re2[(6)2/6(0,6)],  ¢>0,

Without loss of generality, we substitute F = U, G =V, & = t and h =X into (7)-(9) and rewrite
the equations as follows. The renaming of these variables is in par with the physical meanings of the variable
and to match our Mathematica program variables and its outputs. It is done purely for our convenience.

Uxxx +27 x(l _ t)Uxx + t(l - (Ux)z + UUxx + XV) - t(l - t)(Ux)t =0, (10)

Vex +272x(1 — OV, Pr + UV, — nU,V)Pr — tPr(1 —t)(V.), = 0. (11)
The boundary conditions (5) reduces to,
U@©,t) =U,(0,t) = 0, Uy(eo,t) =1

V(0,t) =1, V(o,t) = 0. (PST Case) V,(0,t) = —1. (PHF Case) (12)
Equations (10) and (11) are coupled nonlinear parabolic partial differential equations and the
corresponding boundary conditions are given by (12). These equations for n=1(steady case) are identical to

those of Ramachandran et al.’®. Also (10) under conditions (12) for buoyancy parameter A = O (forced convection
flow) is the same as that of Williams et al.*® when m=1 in their equations.

HAM Solution :
The main components of the HAM procedure are selecting suitable initial profiles satisfying the
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boundary conditions of the problem; choosing an appropriate Initialguess and linear operators as

Up(x,t) =1 — e™ and Vo(x, 1) = e, (13)
I-U = Uxxx - Ux; I-V = Vxx -V, (14)
so that its solutions are simpler to evaluate analytically. The nonlinear operator is directly written from the
governing equation of the problem. In HAM analysis, we always get a system of deformation equations which

have to be solved.
A detailed HAM procedure and error analysis (Ref. Seshadri etal. (2014)). The results are presented as

Ui(x t; cy) = QU1 (x, £ cy) + U (x, t; ¢y)+ Ch + Che” +Che™ (15)
Vit oy) = QVig(x,t; o) + Vi (x, t; o)+ Che* +Che™ (16)
When | =1 in (15) and (16), the solution series are computed as
_ _ cy Ttey cy  xXcyy _ Ty |, xcy —x
Ui ) =1-e™+x+—~ +ﬁwu+ﬁg—7?sz+(2+-2 Acy)te™. (17)
L cyPr  3tnPrcy Prey | xPrey\  _ 3Prcy  3nPrcy  xPrey\
Vl(X,t)—e +CV_T_ > (CV_T+T)6 x—tPT'CV.+< > + > - > )te

(18)
In the similar way, we can obtain the series solution for U, (x, t), V, (x, t) and Uz(x, t), V3(X,t) andso

on. Since the series solution expressions are too long to be fitted in a page even for Uz(X, t) and 2 (x, 1)
they are not given here. From these series solutions form, it can be seen that the number of terms in the series
solutions grows very large as | increases from 2 to 3. One can imagine the size of the series for | = 10, such large
size calculations can be handled with ease using Mathematica. In all of the figures, we use

A=n=t=1, ¢y =—-1.63203, ¢y = —0.45538 and Pr=0.7 unless it is mentioned otherwise.

Numerical Solution :

Though several numerical results are available in the literature, to compare our own approximate
analytical results for various parametric values, we have performed numerical computation with the simple and
still popular technique Keller-Box Method (KBM). The numerical solution of (10) and (11) subject to the
boundary conditions are obtained using the KBM. Since the details of KBM can be got from the recent work
of Shafie® and Srinivasacharya et al.’, it is not given here. Briefly mentioning, we first reduce the governing
non dimensional equations to a first order system; the system obtained is then approximated using central
differences. The resultant difference equations are linearized by Newton’s method. The final tri-diagonal systems
are then solved using Varga’s Algorithm.

The numerical results and approximate analytical results agree very well in all the calculations, some of
which they are shown in the tables.

Result and Discussion

We have studied the effect of various parameters such as Prandtl number Pr, Buoyancy parameter A
and unsteady parameter t on velocity and temperature profiles as well as on skin friction and heat transfer rates
for both PST and PHF cases. The approximate analytical solutions are obtained in the form of a general series
for both the velocity U(x,t) and the temperature V(x,t) after solving the governing equations with its appropriate
boundary conditions using the computational software Mathematica. The expressions for U(x, t) and V(x, t)
have been computed up to 30th-order.

The convergence of the non-similar HAM series solutions strongly depends on the convergence
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control parameters Cy and Cy which control the rate of convergence. It iscustomary in HAM analysis to plot
Cu and Cy-curvesto identify the interval of optimal convergence control parameters within which any value can
be chosen to obtain convergent of the non-similar HAM solution.

The HAM-based Mathematica package BVPh.2 has been used to compute the minimum value of the
total average squared residual errors of governing equations. The total average squared residual attained its
minimum values at Cy =—1.63203, Cy=—-0.45538 and these values are used for all computation of our results. We
have convergent non-similarity HAM series solutions for governing equations in the whole domain0 <t<1
and 0 <x< +o0. These calculations, not only give the efficiency region of the convergence control parameters
but also their appropriate values to enable faster convergence of the non-similar HAM series solutions.

Computations have been carried out for several combinations of parameters A, t and Pr, and some
representative results are presented here in the form of Tables 1-3 and Figure 3-13.

It can be seen in Table 1 that as we increase the order of iteration the corresponding minimum of the
average squared residual errors decreases. Also observed the CPU time to compute the exact residual errors
even for the lesser order of approximation. For example it needs 25.04, 372.44, 835.62, 1023.25 and 1723.15
seconds of CPU time for I =1,5,10,15,30 respectively and therefore not very useful in practice. The computation
is stopped when a certain convergence criterion is satisfied. Tables 2 and 3 present the convergence of surface
shear stress U" (0, t) and heat transfer rate V' (0, t) for the PST and PHF cases when t=0.5and A =n=1at
various values of Prandtl numbers. Numerical calculations are done using Keller-Box Method (KBM) to compute
velocity and temperature for various values of the dimensionless parameters of the problem. Numerical results
of present HAM and KBM are compared in Tables 2 and 3 and are found to be in good agreement.

The Cy and Cy curves have been drawn for the 10™-order non-similar solution series for different
values of unsteady parameter t such ast = 0.0, 0.5 and 1.0 which are shown in Figure 2. Itis seen thatatt=0.0
and 1.0, shear stress rates U™ (0, t) converges to the values for all Cy in the interval [-1.9, -0.3] and [-1.5, -0.0],
respectively. At t = 0.5, it also converges to the same value (which is different from that at t = 0.0 and 1.0) when
in the interval [-2.1, -0.4]. However, at t=0.5, U" (0, t) converges in the region [-2.1, -0.4]. Similarly, att=0and
1.0, the heat transfer rate —V' (0O, t) converges to the values for all Cy in the interval [-1.9, -0.3] and [-1.6, -0.2],
respectively. Att=0.5, italso converges to the values (which is different from that att = 0 and 1.0) when in the
interval [-1.3, -0.2]. However, att= 0.5, V' (0, t) converges in the region [-1.3, -0.2].

Table 1. Minimum of the average squared residual error Ey and Ey with the CPU time(Sec.) at different order
of iterationsfor Pr=0.7andt=n=A=1byusing Cy =-1.63203 and Cy =—0.45538

A4 Eu Ev CPU time(sec.)
1 1.646122x107* 1.094900x10° 25.04

5 1.867819x10™° 1:784361x107* 37244

10 2.092342x10°° 3:002289x107° 835.62

15 4.109238x10~" 2:338722x10°° 1023.25

20 3.228370x10°8 5:931709x10~’ 1289.88

2 2.356275x107° 1:777216x10°8 1501.06

30 1.209200x10°° 1:074358x10° 1723.15
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Table 2. The shear stress rate U" (0, t) and heat transfer rate -V ' (0, t) for the PST casewhent=n=1

U" (0, 1) V' (0,0
Pr A HAM KBM HAM KBM
07 1 1.78181 1.78182 1.09499 1.09500
70 1 150513 150513 1.79373 1.79375
200 1 1.49738 1.49739 251995 251999
600 1 1.41685 1.41685 352916 352916
07 1 0.72629 0.72630 0.79108 0.79109
70 1 0.95669 0.95673 158257 158251
200 1 111155 1.11159 2.32438 2.32437
600 1 1.22744 1.22746 3.30649 3.30649

Therefore, cu in the interval [-1.6, -0.4] does not affect the values of shear stress rates and cv is [-1.5,

-0.3] for heat transfer rate. To answer to the question as to which optimum values of cy and one has to choose
in these intervals, the computation of average squared residual errors has the answer. It helps to obtain the
optimal value of these optimal convergence control parameters within that interval.

The variation of the skin friction coefficients (i.e.,, 272 (Re,)'/? ¢) and the Nusselt number

(i.e. 272 (Rey )2 Nu) with tfor the PST case when Pr = 0.7, 7.0 are shown in Figure 3. It observed that, the
increase in unsteady parameter t decreases the both skin friction and heat transfer, which means that the
boundary layer thickness decreases with increasing unsteady parameter. Due to the impulsive motion the skin
friction and the heat transfer coefficients have large values for small time after the start of the motion and they
decrease continuously and reach the steady-state values at t=1 (t* — o).

Table 3. The shear stress rate U" (0, t) and heat transfer rate V' (0, t) for the PHF casewhent=n=1

U" (0, 1) -V'(0,1)

Pr A HAM KBM HAM KBM

0.7 1 142964 142968 114646 114646
7.0 1 1.39860 1.39860 1.63280 163287
200 1 1.32140 1.32140 2.45475 2.45475
60.0 1 1.28246 1.28248 3.51652 3.51652
0.7 -1 0.78391 0.78390 108767 108767
7.0 -1 1.08172 1.08175 152549 152550
200 -1 119559 119559 2.40008 2.40009
60.0 -1 123501 1.23503 3.45576 3.45576

The influence of the shear stress U" (0, t) and heat transfer rate -V ' (0, t) with t for the PST case when

A =0,5,10 (the buoyancy assisting case) at fixed Pr = 0.7 are plotted in Figure 4. Here, the shear stress and the
heat transfer rates increase with A , because positive buoyancy force acts like favourable pressure gradient
which accelerates the motion and reduces both momentum and thermal boundary layers. Therefore, both the
shear stress and the surface heat transfer rates are increased. For t=n = 1.0 and Pr = 0.7, the shear stress and heat
transfer rates increase by about 49 % and 43%, respectively, as A increases from 0to 10. Also, the heat transfer
rate—V'(0,t) forn=0.0,1.0, A =0,5,10 at fixed Pr = 0.7 are plotted in Figure 4. For n =0 (isothermal surface



464 Shankar Rao Munjam,, et al., JUSPS-A Vol. 29(10), (2017).

case), the heat transfer is found to be less (about 37%) than that of n = 1 (non-isothermal surface case). The

reason for this trend is that for n = 0 the surface temperature difference T,, — T is less than that for the case
of n=1. Thisresultsin lower heat transfer for n = 0 as compared ton = 1. Also, for gases (uaT) reduction in
surface temperature causes thinner boundary layer which in turn increases the shear stress rates.

The effect of unsteadiness on the velocity and temperature profiles U'(x, t) and V(x, ty when A =n=1
and Pr=0.7 are plotted in Figure 5-6. Here, the velocity increases and temperature decreases with increasing the
unsteady parameter t. The effect of buoyancy parameter A on the velocity and temperature profiles are plotted
in Figure 7-8. It is seen that both velocity and temperature increases for A = 1.0,0.0, —0.5,~1.0 for a fixed

unsteady parameter and for the isothermal surface case.
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The effect of Prandtl number Pr on the temperature profiles V(x, t) for the PST case is displayed in
Figure 9. This demonstrates the fact that the temperature profiles decrease with the increase of Pr. Physically,
Pr=0.7 and 7.0, correspond to air and water respectively. Since the increase in the Pr from 0.7 to 10 reduces the



466 Shankar Rao Munjam,, et al., JUSPS-A Vol. 29(10), (2017).

thermal boundary layer, the temperature profiles decrease with increasing Pr. Also for large Pr the thermal
boundary layer is much thinner than the momentum boundary layer, because the effect of Pr is more pronounced
on the temperature profiles than on the velocity profiles. This is due to the fact that Pr occurs explicitly in the
energy equation.

The surface shear stress -U"(0, t) and heat transfer rate -V'(0, t) for n =1.0, 0.0, -0.5,
-1.0 with t for the PST and PHF cases corresponding buoyancy flowA >0 and A <0 at fixed Pr = 0.7 are plotted
in Figures 10-13. It is observed that the shear stress increases and the heat transfer rate decreases with
decreasing n values. For buoyancy assisting flow A > 0, the shear stress and heat transfer rates for the prescribed
surface heat flux are slightly less than those of the prescribed surface temperature, but for the buoyancy
opposing flow A < 0 the reverse trend is observed.

Conclusion

The present study discusses the development of flow and heat transfer near the stagnation region in
the presence of buoyancy forces over a heated vertical plate. The solutions have been obtained for flow and
heat transfer in the form of the series solution using an advanced Homotopy analysis method (HAM) while the
numerical results are computed using the Keller-Box Method (KBM). The surface shear stress and heat transfer
are found to be increasing with time and there is a smooth transition from the small-time solution to the large-
time solution. The surface shear stress and heat transfer for buoyancy assisting flow are more than those of the
buoyancy opposing flow. The surface shear stress decreases for the buoyancy assisting flow and increases
for the buoyancy opposing flow. For buoyancy assisting flow, the surface shear stress and heat transfer for the
prescribed surface heat flux are slightly less than those of the prescribed surface temperature, but for the
buoyancy opposing flow the reverse trend is observed. The surface heat transfer can considerably be reduced
by using a lower Prandtl number fluid. It can also be reduced by imposing the buoyancy force in the opposite
direction to that of the forced flow or by maintaining uniform temperature. The accuracy and efficiency of the
proposed methods have been demonstrated by the numerical results. This approach has general meanings and
thus can be used to solve many same types of coupled system of non linear partial differential equations in
science and engineering.
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