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Abstract

The  Cosmological principle is the hypothesis that the universe is spatially homogeneous and isotropic.
In the study of cosmological model, the Einstein field equations and construct a static model of the universe. A
method has proposed by Berman 1991 3 on the basis of the conservation law, to incorporate the variable

Gravitational constant ‘ G ’ and Cosmological constant ‘ ’ in the Einstein field equations. The solutions are

obtained by choosing suitable values for the constant   and  , a number of cosmological models may be
constructed and the validity of these models may be tested on the theoretical and observational grounds.

Key words : Cosmological model; perfect fluid; static model; variable cosmological and gravitational
constants.
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Introduction

The speculations about the nature of the universe are as old as man himself. Newton’s gravitational
theory meets with serious difficulties when applied to the universe as a whole. The three crucial tests of the
general theory of relativity show the modification the Newtonian theory and gives solution to the problem of
the field of a star in the empty space surrounding it at least to the distance of the order of the dimensions of the
solar system. Now it is of great interest to apply the general theory of relativity to the universe as a whole.
Einstein took it shortly after developing the general theory of relativity. Since them it has been a matter of
interest of many investigators. It seems to be very much interesting because certain large-scale properties of
the universe are experimentally known and capable of comparison with such a model of the universe. The
Einstein’s modified field equations are
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The constant  is such that its effect is negligible for phenomenon in the solar system or even in our
own galaxy; but gains importance when the Universe as a whole is considered. By considering various values
of   with  various   ijT  different cosmological models can be constructed. The static solution of Eq. (1)

represent the “Static Cosmological Models” and in the same way for non-static ones for time dependent
physical parameters.

The cosmological constant is a parameter describing the energy density of the vacuum and a potentially
important contributor to the dynamical history of the universe. A sufficiently large cosmological constant will
force galaxies to accelerate away from us, in contrast to the tendency of ordinary form of energy to slow down
the recession of distant objects. The value of  in our present universe is not known and may be zero, although
there is some evidence for a nonzero value of cosmological constant precise determination of this number will
be one of the primary goals of observational cosmology in the near future.

In General Relativity, any form of energy affects the gravitational field, so the vacuum energy becomes
a potentially crucial ingredient. To a good approximation, we believe that the vacuum is the some everywhere in
the universe, so that the vacuum energy density is a universal number, which we call the cosmological constant.
More precisely, the conventionally defined cosmological constant  is proportional to the vacuum energy

density ; they are related by    238 cG , where ‘G’ is Newton’s constant of gravitation and ‘c’ is
the speed of light.

The cosmological term  ijg  has been introduced by Einstein in to his field equations to construct a
static model of the universe. Later on, it has been observed that the universe is expanding and therefore the
cosmological term has not been of much significance, recently it has been shown that ‘’ is not a constant but
it is a variable quantity (Eqs. (1), (3), (4), (5)). The same is true for the gravitational constant ‘G’ (Eqs .(5) and (6)).
To incorporate the variable gravitational constant G and the variable Cosmological term  in to the Einstein
field equations, a method has proposed by Berman3 on the basis of the conservation law, where the field
equations are written as
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and the conservation law is expressed as :  0; j
ijT                                                         (3)

Using Eq. (3) in Eq. (2), we have

 08 ;;  ij
i
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These shows that  and G both are simultaneously. Berman and Rahman1,8 have constructed
homogeneous and isotropic cosmological models with the help of the Eqs. (2), (3) and (4) by assuming the
variations of G and  as:

 2 AtG ,  2 Bt                                                                                      (5)
Here we study the cosmological models by assuming
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where  is a constant and therefore the variations of  G and  given in Eq. (5) is included in Eq. (6),  we write,
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The constant ‘’ from the present day observational data.

Basic equations and assumptions :
Basic equations :

The Robertson-Walker Metric for homogeneous and isotropic cosmological model space-time is given
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where  R(t)  is function of  ‘t’ only.
By taking large-scale viewpoint the energy momentum tensor of content of the universe takes the same

form as for a perfect fluid distribution of matter. The energy momentum tensor is
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where ‘p’ is the pressure, ‘’ is the proper density and ui are the four velocities of the fluid particles, which are
in this case cluster of galaxies. Since the particle is at rest in the coordinate system  ),,,( r  we have

  cu ,0,0,0

we write,  uk =(0,0,0,1), where ‘c’ is the velocity of light be unity.
Therefore,

 ),0,0,0( 2
 cugu k
k                                                                                              (9)

We consider the Einstein field equations as
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Using energy momentum tensor in Einstein field equations, we get

 















  ijjiijijij pguu

c
p

c
GgRgR 


24

8
2
1

                                                (11)

and the conservation law as:  0; j
ijT

Substituting the values from metric Eq. (7) and Eq. (9) in Eq. (11), we get the following set of field equations:

 
2

2

2

2

2

833 cG
R
kc

R
R

 


 (12)

 
2

2

2

2

2 82 c
c
Gp

R
R

R
R

R
kc







(13)

Differentiating the Eq. (12) w. r. t. ‘t’ we get
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Adding Eq. (12) and Eq. (13), we get
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Substituting Eq. (15) in Eq. (14), we get
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Multiplying  R3  in Eq. (16), we get
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Conservation law :
The conservation law as
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Using conservation law, we find
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Eq. (19) substituted in Eq. (18), gives
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Further adding Eq. (12) and Eq. (13), we get
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Substituting the Eq. (12) in Eq. (21), we get
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Eqs. (12), (20), (21) and (22) are the fundamental equations governing a homogeneous and isotropic cosmological
model of the universe. Eqs. (12), (20) and (22) are same as the corresponding equations in general relativity, but,
here we have additional Eq. (21) due to the variation of G and   We consider the dependence of the pressure
in a homogeneous and isotropic model of the universe as

 2cp   (23)
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A model is constructed in two ways either considering    =  0  or   
3
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 . The model constructed with

  =  0 are used to study the universe and present. The model constructed with   
3
1

  are used to study the

universe in the past when it was radiation dominated. In this way we do not have a theory how the universe
reaches to matter dominated era from the radiation-dominated era. However, for a positive density and positive
pressure of the universe, we have

 0                                                                                                                (24)
The above equality sign implies that the model is pressuerless.
Following Berman3 and Rahman1, we consider the dependence of G and  as
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and thus, the fundamental equations governing the model of the universe are Eqs. (12), (20), (21), (22), (23)
and (25).

Variation of ,  G and 

From Eqs. (20) and (23), we get
 

)1(3 




R
R

(26)

then from Eqs. (21), (25) and (26), we get
 

R
R

G
G 

)1(
)1(3







 (27)

and  
 

R
R

)1(
)1(3











 (28)

Integrating Eqs. (26), (27) and (28) under the conditions

0tt  , 0RR  , 0  , 0GG  , and 0                                                                     (29)
we get
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with         01  (33)

Values of constants    and  
We may take the initial conditions for the construction of a cosmological model as
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From Eq. (12), we have
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According to the initial conditions Eq. (34) at t = 0, the numerical value of 
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compared to the numerical values of  G8  and  2c . Thus, for a non-singular model of the universe satisfying
the initial conditions Eq. (34), we have a condition

 08 2  cG iii                                                                                               (36)

which is same as proposed by Sivaram et al.12 Eq. (25), which is our proposition for the dependence of G on
  then implies

 08 2  cG iii                                                                                                  (37)

at t = 0  comparing Eq. (36) and Eq. (29), we have
 1                                                         (38)

For   1 , Eq. (21) and Eq. (25) together imply  0G  for  0G  this gives  ,0   which on

substitution in 
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 gives R = 0 and hence we have a static model of the universe, which is

unphysical.
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By choosing suitable values for the constant  and  one may have the variation of , G and  and
then from Eq. (35) one may get the corresponding dependence of R on t. In this way, a number of cosmological
models may be constructed and the validity of these models may be tested on the theoretical and observational
grounds. Instead of approaching in this way, we propose to first determine the constants  and  by considering
two variables out of the three variables , G and . We have three types cosmological models of the universe
discussed in the next section.

Cosmological models :
Substituting Eq. (25) in Eq. (12), we get
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Also, from Eqs. (22), (23) and (25), we get
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As discussed in the previous section, we have the following three types of the cosmological models
depending on the numerical values of the physical quantities considered for the determination of the constants
and  as follows:

Type I
Let us consider Eqs. (30) and (31) and the corresponding numerical values as follows
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The Eq. (25) then gives
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Therefore, in the cosmological model   is negative and increasing from   228108  cm  to  257102  cm
as R increases from  cm1310  to  .1028 cm  For  0,0    and  ,0  Eq. (40) implies that  ,0R  i.e., the
model is deaccelerating.

Type II
Let us consider Eqs. (30) and (31) and the corresponding the numerical values as follows:

,1013 cmRR i   ,10 317 cmgi    22810  cmfi

and ,1028
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0 cmg                                                                (45)
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The numerical values given in Eq. (45) when substituted in Eqs. (37) and (40) gives
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Eq. (25) then gives
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In this case also  0R  as may be seen from the Eq. (40). Therefore the model is deaccelerating.

Type III
Let us consider Eqs. (30) and (31) and the corresponding numerical values as follows:

,1013 cmRR i   unitssgcGGG fi ...106.6 30  
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The numerical values given in Eq. (50) when substituted in Eqs. (30) and (31) gives
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and hence,
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Eq. (25) then gives  
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For  0,0    and  ,0  Eq. (40) implies that  ,0R  therefore, the model is deaccelerating.

Conclusion

In this paper, we have seen that the Einstein field equations with variables G and . Such that

 





8

2cG 
   and the usual conservation law implies that  ,1  for  0G  and  0  ,0 G  and

 0 .  Applying the initial conditions as proposed by Isham et al.6 and Sinha et al.10  for the construction of
non-singular cosmological models, we have seen that there are three types of singular cosmological models
depending on the constants  and . On the observational ground, all the cases the model is deaccelerating.
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